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Abstract Prompted by considerations about (i) the compositionality of cognitive functions. 
(ii) the physiology of individual cortical neurons, (iii) the role of accurately timed spike patterns 
in wrtex, and (iv) the regulation of global conical activity, we suggest that the dynamics of 
cartex on the 1-ms time scale may be described as the activation of circuits of the synfre- 
chain type (Abeles 1982, 1991). We suggest that the fundamental computational unit in cortex 
may be a wave-like spatio-temporal pattem of synfire type. and that the binding mechanism 
underlying compositionality in cognition may be the accurate synchmnirnfion of synfire waves 
that propagate simultaneously on distinct, weakly coupled, synfire chains. We propose that 
Hebbian synaptic plasticity may result in asuperposition of synfire chains in conical connectivity, 
whereby a given neuron participates in many distinct chains. W e  investigate the behaviour of 
a much-simplified model of cortical dynamics devised along these principles. Calculations and 
numerical experiments are performed based on an assumption of randomness of stored chains, 
in the style of statistical physics. It is demonstrated that: (i) there exists a critical value for the 
total length of stored chains; (ii) this Storage capacity is linear in the network‘s size; (iii) the 
behaviour of the network around the critical point is characterized by the self-regulation of the 
number of synfire waves wactive in the network at any given time. 

1. Introduction 

Mathematicallcomputational models of the dynamics of cerebral cortex, inspired in particular 
from statistical physics (e.g. Little 1974, Hopfield 1982, Amit 1989), attempt to account for 
what appear to be fundamental properties of mental representations, or entities: 

(1) Srabilify. Mental entities are persistent, or stable, over a time span characteristic of 
working memory (of the order of 1 s) .  

(2) Long-term memory (reproducibilify). A given entity can be evoked, or retrieved, reliably 
and reproducibly, with all or part of the specific features associated with it, at different 
times. 

(3) Learnabilio. Learning allows the storage of new entities in long-term memory. 
(4) Large storage capacity. The brain has the capacity to store and retrieve large numbers 

of distinct entities. 

Another aspect of the dynamics of mental representations, fundamental yet less amenable 
to quantitative study, is cumpositionalily, related to the property of dynamical binding: 

( 5 )  Compositionalify. New entities can be constructed by composing with each other, partly 
in a recursive manner, entities that are already stored-ach one with its individual 
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associations-in our cognitive system. Compositionality is ViSUally limitless, although 
allowable constructions respect various domain-specific constraints. Composition relies 
on dynamical, i.e. reversible. binding, whereby the same constituents can be bound into 
different constructs at different times. A dynamically bound entity can also be stored 
as such in long-term memory. 

A model of cortex typically establishes a correspondence between mental entities and a 
collection of sfafes of a suitably defined dynamical system; these states are meant to describe 
spatio-temporal patterns of activity in cortex. Stability (Property 1) is often accounted for by 
the existence of $xed points in the dynamics; other stable states, e.g. limit cycles, can also 
be used. The retrieval of a given entity upon stimulation of the system by an appropriate 
input (Property 2) is interpreted as the convergence of the state towards a fixed point, 
or attractor. This operation is sometimes viewed as the completion of a partly elicited 
entity, exploiting stored associations between its features; hence the frequently used term 
associative-memory model. Learning (Property 3) is envisioned as a modification of the 
coupling constants between the neurons, i.e. the synaptic weights, resulting in an appropriate 
modification of the dynamics, e.g. the creation of an attraitor at a prescribed point in state 
space. The storage capacity of the system (Property 4) is defined as the maximal number 
of distinct patterns-generally chosen at random-that can be stored and retrieved without 
mutual destructive interference. 

In most models, the attractors corresponding to mental representations are defined in 
terms of thefiring rates of a population of neurons;such firing rates are typically measured 
on the I-s time scale. Thus, thefine temporal structure of spike trains on the 1-ms time 
scale, and in particular the accurate correlation or synchrony between spikes emitted by 
different neurons, is ignored. However, the idea that this fine temporal structure of neural 
activity could be used by the brain, in particular in binding and compositionality (Property 
5). has become a focus of interest in the last few years (von der Malsburg 1981, 1987; see 
also von der Malsburg and Bienenstock 1986). Research in this area is still exploratory (for 
a short review, see Bienenstock and Geman 1993). 

We note at this point that rate-coded associative-memory models, which postulate the 
existence of attractors defined in terms of the firing rates of neurons, predict a bimodal 
distribution of firing rates across  the^ neural population under consideration; moreover, the 
higher of the two modes should be near saturation (% lo3 spikesk). A discrepancy exists 
between these predictions and biological data (see, however, e.g., Amit and Tsodyks 1991). 

In this paper we propose that the fundamental unit of computation in cortex is a 
spatio-temporal activity pattern of the synfire type (Abeles 1982, 1991); such a pattern 
is characterized by the propagation of volleys of nearly synchronous spikes-as measured 
on the I-ms time scalealong a synjire chain, i.e. a sequence of pools of neurons connected 
in a feedforward way (figure 1). We propose that the microstructure of cortical connectivity, 
shaped by Hebbian plasticity, is a superposition of synfire chains, whereby a neuron 
participates in many distinct chains. At any given time, a large number of synfire chains are 
simultaneously active. We propose to distinguish between two modes of synfire activity: 
a background or spontaneous, mode, and a computation-related mode, as takes place, 
for instance, in perception or language-related behaviour. We suggest that the latter is 
characterized by the synchronous propagation of synfire patterns along a number of distinct 
chains. Such synchronization, or dynamical binding, is made possible by weak synaptic 
coupling between chains; it results in several chains behaving, for a period of time, like 
a single broader chain. We propose that this mechanism may underlie compositionality in 
cortex. In background activity, synfire patterns along coactive chains are asynchmnous. 



A model of neocortex 181 

We have argued elsewhere on the basis of numerical studies (Bienenstock and Doursat 
1995) that neural circuits of the synfire type will develop spontaneously in an initially 
unstructured network as a result of Hebbian synaptic plasticity. This self-organization of 
synfire chains may be viewed a process of natural selection (Changeux and Danchin 1976, 
Edelman 1988), where neural circuits are selected according to a simple ‘fitness’ criterion 
related to the cooperativity of parallel multisynaptic pathways (von der Malsburg 1987). 
This provides a mechanism for incorporating both environmental and endogenous factors 
in the epigenesis of the nervous system (section 9.3). 

We shall present in this paper a much-simplified model of cortical dynamics devised 
along the principles outlined above. The main features of the model are as follows: 

(a) The state of the system describes the spiking activity of a population of excitatory 

(b) State update is synchronous. 
(c) The total activity level in  the network is approximately constant. 
(d) The network supports reproducible spatio-temporal patterns of activity, of the synfire 

type, defined on the I-ms time scale. The length of a synfire chain determines the 
duration of the pattern it carries; this duration is measured on the 1-s time scale. Another 
important parameter is the width of the chain. 

(e) Storing a given synfire pattern takes the form of a Hebbian reinforcement of synfire 
links, where a synfire link is defined as the collection of all synapses from one pool 
of neurons to the next pool in a given chain. Synfire patterns are superimposed in the 
network in such a way that each neuron participates in many stored patterns. 

(f) Stable and reproducible synfire activity takes place if the distribution of membrane 
potentials across the network is, at any given time on the 1-ms time scale, bimodal. 
The distribution of spiking rafes, measured on the I-s time scale, is unimodal, and 
centred around a low value. 

(g) The condition mentioned in (0, ensuring stability of synfire activity, is satisfied provided 
a certain storage cupairy is respected. This storage capacity is linear in the size of the 
network. 

(h) Dynamical binding is achieved by the synchronization of synfire waves propagating 
along distinct chains; it is induced by weak synaptic coupling between these chains. 
(Dynamical binding cannot be studied under the strictly synchronous update scheme- 
item (b) above.) 

The motivation behind items (a) and (b) is twofold. On the one hand, there is reason 
to believe that the integration of afferent signals by the somato-dendritic membrane of 
a given cortical neuron is highly sensitive to the precise timing of these signals; some 
authors describe the function of cortical neurons as coincidence detection (Abeles 1982, 
1991). Electrophysiological data moreover support the notion that the dynamics of cortex 
generates reproducible accurately timed spatio-temporal patterns (Abeles et a1 1993a; see 
also Softky and Koch 1992), and that these play a role in behaviour (Abeles et af 1993b,c). 
These issues will be discussed in sections 3 and 4, and then again in section 9.5. after the 
model is presented. 

On the other hand, the use of the accurate time structure of synfire activity makes 
it possible to envisage a neural mechanism for binding and composition (Property 5), 
consisting of synchronizing the propagation of activity across different constituent synfire 
patterns (Bienenstock 1991, Abeles etuf 1993b). In sections 5 and 6 we shall study a strictly 
synchronous version of the model. Such an update scheme does not account for binding and 
compositionality, since it synchronizes all coactive waves by construction. We propose in 
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Appendix B a refined version-which we call an almost-synchronous dynamics-motivated 
by more detailed biological considerations; dynamical binding is studied under this model 
in Appendix C. 

The motivation behind item (c) is the existence in cortex of a system of inhibitory 
neurons which controls the global level of activity; such a system is implicit in the model. 
The regulation of firing rates is an important issue in the modelling of the physiology of 
cortex; we shall argue (sections 2 and 7) that connectivity of the synfire-superposition type 
(item e) allows robust regulation of firing rates, provided the two modes in the distribution 
of membrane potentials (item f )  are well-separated. In Appendix D we contrast this situation 
with the case of a random connectivity graph, where the distribution of membrane potentials 
is unimodal; we argue that in such a graph robust regulation of global cortical activity is 
practically ruled out. 

The quantitative part of this paper (sections 6 and 8) is concerned with storage capacity, 
defined as the number p of synfire links (item e) that can be  stored without mutual 
destructive interference. As is customary, we shall base our estimations on an assumption 
of randomness of stored patterns. Analysis as well as computer simulations (section 6.3) 
show that there exists a critical value pc for p ;  pc is the storage capacity of the network, 
and we shall see that it is linear in the size of the network. When p is of the order of 
pc.  each neuron participates in many stored patterns. The network then exhibits a non- 
trivial behaviour, characterized.by the occurrence of spontaneous synfire activity, and by 
the self-regulation of the total number of synfire waves present in the system at any given 
time. 

Storaga capacity is large but finite; the composition of stored patterns with each other 
is, however, expected to provide a virtually limitless repertoire of new entities (section 8). 
We shall demonstrate (Appendix C) that the binding of synfire patterns into a composite 
pattern requires only weak synaptic coupling between chains, somewhat in the same way 
as phase locking of oscillators is induced by weak coupling between them. 

One word of caution is in order at this point. Although the spatio-temporal patterns 
described in items (d) and (e) exhibit the properties of mental representations listed at the 
beginning of this section (Properties 1-5), they should not be viewed as standing in strict 
correspondence with such mental entities. The very notion of a mental entity is a problematic 
one, inasmuch as it attempts to put boundaries, both in semantic space and in time, where 
there need not be. Describing mental activity as a succession of evocations-internally or 
externally triggered-f separate entities does not do justice to the semantic connectedness, 
as well as to the permanent unfolding, of cognitive processes. A more satisfactory, if less 
quantifiable, account-in particular where language is concerned-is one where a mental 
process is construed as a flow, or scanning, through a highly connected cognitive domain, 
with shifts of emphasis4ontinuous or discrete-along a sequence of structures; the latter 
are part of a broad domain, the semantic background of the process taking place-cf the 
notion of profiling in Langacker (1987). 

On such a view, the use of strictly stable states to model the persistence of mental 
representations in working memory (Property 1) is not desirable; it may also be futile 
to count with precision how many entities fit within a given network. In this paper we 
suggest that the notion of stability as used to characterize wave propagation along a synfire 
chain (Abeles 1991) provides, in most cases, an appropriate model for the persistence of 
mental entities in working memory: we shall say that synfire propagation is stable if it 
is reproducible, and robust against perturbations. The length of the pathway, hence the 
temporal extent of stability, is finite. Thus, although Property 1 is not strictly met, Property 
2 is: partial activation of any pool of a chain will reliably elicit the full activation of the 
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next pool in that chain. In this sense, synfire chains can be said to display the property 
of associative memory. When chains include feedback links, the activity may reverberate 
indefinitely within a given chain. Such a situation provides a transition from the model 
proposed here to conventional associativamemory models (section 9.4). 

We shall in section 8 derive a rough estimate for the minimal width (item d) of a chain 
required for stable synfire propagation; we shall term a chain of minimal width a narrow 
chain. We suggest that isolated narrow synfire patterns have little semantic content: any 
such pattern may convey as much ‘meaning’ as does, in visual perception, a single part of 
an object boundary, say a straight line, taken in isolation from its context (see section 9.6). 
Storage capacity (item g), which is linear in the size of the network (section 6), is expressed 
in terms of narrow chains. 

We shall argue in section 8 that at any given time a large number of narrow chains are 
simultaneously active in the brain. As mentioned above, we propose that the synchronization 
of synfire patterns provides the mechanism for compositionality in cortex (Bienenstock 
1991). Composite, or broad, synfire patterns inherit from their narrow constituents 
the fundamental properties mentioned at the beginning of this section. From a mere 
combinatorial viewpoint, the number of composite patterns is virtually infinite (section 
9.7). However, as mentioned, (weak) synaptic coupling is required to bind synfire patterns 
with each other in a stable configuration. These couplings implement the domain-specific 
constraints that are manifest in all forms of compositionality (Property 5). It is these 
temporarily bound broad synfire patterns that, we propose, provide a neural counterpart to 
mental entities as described in the beginning of this section. 

In sum, the assumption put forward in this paper, namely that our brains compute with 
synfire patterns rather than with $xed-point attractors (Hopfield 1982, Amit 1989) or with 
cardinal cells (Barlow 1972), offers four main advantages: 

It provides a neural framework for compositionality that appears more plausible, in 
several ways, than the cumently popular solution b&ed on the phase locking of neural 
oscillators (see section 9.7). 
It is consistent with, and further amplifies, the view that brains develop according to 
principles of natural selection. 
It accounts for the finding that some accurately defined firing patterns in cortex reproduce 
more often than by chance and correlate with behaviour (see discussion in section 9.1). 
It suggests a mechanism for robust regulation of cortical activity, predicting a 
distribution of firing rates centred around low values. 

The plan of the paper is as follows. The issue of low firing rates is discussed in section 
L. Section 3 discusses briefly the relative merits of synchronous and asynchronous update 
schemes in models of cortical dynamics. In section 4 we provide a succinct review of 
the dynamics of synfire chains, based on the work of Abeles and collaborators. Section 5 
presents the model and section 6 describes its behaviour, first qualitatively and then in more 
detail with the help of computer simulations. In section 7 we briefly discuss the tolerance 
of the model to noise. Section 8 discusses plausible ranges for the various parameters of the 
model. In the general discussion (section 9) we address again most of the above-mentioned 
topics; we consider briefly the issue of selection versus instruction in brain epigenesis 
(section 9.3); we outline a synfire-superposition model of cortical computation, focusing on 
perception and emphasizing the hierarchical/recursive aspects of compositionality: finally, 
we propose a metaphor which likens complex cortical spatio-temporal patterns constructed, 
from elementary synfire waves to complex proteins obtained from linear chains of amino 
acids by a process of folding in three-dimensional space. 
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In Appendix A we consider an extension of the notion of a synfire chain, whose 
connections all have identical conduction time, into that of a synfire braid; the latter 
accommodates more realistic cortical circuits, with non-uniform conduction times. In 
Appendix B we describe the ‘almost-synchronous’ update scheme (see above) and discuss 
again the biological plausibility of the strictly synchronous scheme used in the paper. Based 
on this almost synchronous dynamics, Appendix C shows that weak synaptic coupling 
induces synchrony across chains. Finally, in Appendix D, we study the case of a random 
connectivity graph; we argue that such a graph does not allow robust regulation of global 
activity and does not support long-range order in accurately defined activity patterns. 

2. The regulation of global cortical activity 

In this section we discuss, in view of some elementary physiological and anatomical findings, 
the problem of low firing rates mentioned in section 1. Accounting for these observations 
is one of the goals of the model proposed in this paper. 

The fact that the global activity in cortex is fairly stable around low yet non-zero levels 
is somewhat of a puzzle, in view of the following two observations. First, the overwhelming 
majority of neurons and of synapses in cortex-about 9O%-are excitatory. Most excitatory 
neurons are pyramidal cells, producing local connections as well as long-distance axons 
that travel through the white matter. In this paper, we are interested in the dynamics of a 
large population of excitatory cortical neurons with dense feedback connectivity, typically 
a collection of pyramidal cells d i s~buted  across several areas (see discussion in Appendix 

Second, the theoretical limit for the firing frequency of individual neurons, set by their 
absolute refractory period, is close to lo3 spikeds. In spite of this, sustained high firing 
rates are seldom observed in cortex. Although short high-frequency bursts do occur, cortical 
cells in general have low firing rates: the mean of the distribution of firing rates in cortex 
is of the order of 5 spikeds, with a somewhat smaller median. 

As mentioned in section 1, these facts are not easily accounted for by rate-coded 
associative-memory models; an amactor in such a model is typically a bimodal distribution 
of firing rates, stable over a period of the order of 1 s, with the higher mode of the 
distribution located near the saturation frequency for cortical neurons (see, however, e.g., 
Amit and Tsodyks 1991). 

In all likelihood, inhibitory neurons play an important role in the regulation of global 
cortical activity. It is worth noting that inhibitory neurons are distinguished from excitatory 
ones in cortex by several anatomical and morphological features. In particular, inhibitory 
neurons in neocortex apparently never project to remote targets via the white matter, whereas 
pyramidal (excitatory) cells always or almost always do (Braitenberg 1977). Inhibitory 
neurons also tend to establish contacts in proximal parts of the postsynaptic cell’s soma or 
dendrites; on dendritic shafts rather than spines: or, in the case of chandelier cells, on the 
initial segments of pyramidal-cell axons. Finally, the characteristic time of the feedback 
mediated by long-distance excitatory projections is longer than that of inhibitory feedback, 
since the latter is exclusively local. 

These data are suggestive of the existence of a control over global cortical activity 
exerted by a system of relatively fast-acting and powerful inhibitory neurons. One may 
consider that the role of these neurons is to set the effectivefiring thresholds of the excitatory 
neurons. According to this view, inhibitory neurons would play little direct part in the 
representation of entities of specific functional or semantic content: the connections to 
and from these neurons would be fairly diffuse. The regulatory function mediated by 

A). 
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inhibitory neurons could nevertheless be complex and elaborate in several ways: different 
levels of activity could be imposed on different subpopulations of pyramidal cells, or on 
different areas of cortex, or at different times; these levels could also be made to depend 
in various ways on the outcome of ongoing computations, which might themselves involve 
the manipulation of specific mental representations. 

There are essentially two alternatives for the modelling of cortical dynamics under the 
assumption that giobal activity is controlled by a dedicated system of inhibitory neurons. 
The first is to explicitly include in the model such a regulatory system. consisting of non- 
specific, i.e.  diffusely connected, inhibitory neurons. We shall briefly review in section 
4 a model that illustrates this approach (Abeles et al 1993b). The second alternative is 
to leave out the inhibitory neurons. and to ‘hard-wire’ in the dynamics the assumption of 
conservation-or near conservation-of total activity. This is the approach adopted here 
(section 5) .  

We stress that this device is merely a convenient way to model the function of 
a regulation mechanism. It is a legitimate simplification under the condition that this 
mechanism acts efficiently and robusfly. This issue is an important one, as delayed-feedback 

 systems often display chaotic behaviour. We shall argue in section 7 that the operating 
conditions of the model proposed are precisely such as to create favourable conditions for 
robust regulation. Under normal functioning of the model, the distribution of membrane 
potentials across the excitatory population at any given time is bimodal. Regulation can be 
expected to be effective and robust if the two modes of this distribution are well-separated 
and if the firing thresholds of the excitatory neurons, set by the diffuse inhibitory system, 
are kept at all times at intermediate values, between the two modes. 

If we now consider the operation of the network from the perspective of firing rates, 
which are measured on a time scale about three orders of magnitude coarser than the 
one where synfire activity is observed, we are in effect averaging out the spatia-temporal 
smcture characteristic of such activity. As mentioned in section 1 (item 0, synfire 
propagation, where activity does not dwell on the same collection of neurons, results in 
a unimodal distribution of firing rates, centred around low values (see section 8). This 
accords well with experimental data. 

In Appendix D we contrast the behaviour just described, which takes place if the network 
is a superposition of synfire chains respecting the storage-capacity limitation (items e-g in 
section I),  with that of a randomly connected one, where regulation is~expected to generate 
chaotic behaviour. 

3. Update schemes: sequential or parallel 

Models of cortical dynamics fall in two large categories, depending on whether they use an 
asynchronous, also called sequential, update scheme, or a synchronous scheme, also called 
parallel. We shall argue here (see also section 9.5) that none of the two altematives is fully 
satisfactory. However, depending upon the connectivity of the network under study, one 
update scheme may be more appropriate than the other. 

In models inspired from statistical mechanics, asynchronous Glauber-type dynamics is 
the method of choice (Glauber 1963); this dynamics is easy to implement numerically, 
and, under suitable conditions, yields convergence to an analytically tractable equilibrium 
distribution. To justify the use of such a dynamics one may argue that it is unlikely that 
two given neurons will update their states at precisely the same instant. The asynchronous 
dynamics can then be viewed as appropriate if the time interval between two updates is 
interpreted as a very small fraction of a millisecond, roughly At,”, where At is a synaptic 
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delay (about 1 ms), and N is the number of neurons in the network. 
By doing so, however, one assumes that the information about a given update is made 

immediately available to other neurons. which is unrealistic. Evidently, many neurons 
in the brain fire at virtually identical times, and it would thus be more appropriate to 
make the update at least partly synchronous. However, it  is not clear a priori which 
neurons will actually fire in synchrony and when. Equally importantly, it is not clear a 
priori when synchrony matters and when it does not. Stated differently, the artificially 
fast transmission of information implicit in the asynchronous dynamics may or may not 
make a difference. If neurons are believed to be activated by large numbers of postsynaptic 
potentials summed over, durations significantly longer than the typical synaptic delay, the 
asynchronous dynamics could be viewed as appropriate. 

Synchronous update schemes pay attention to the precise relative timing of the firing of 
neurons, in particular to temporal coincidences among spikes carried by different afferents 
to a given neuron. Such coincidences are taken by many researchers to be of crucial 
importance to cortical dynamics. The reason for this is that the integration of afferent 
signals by the postsynaptic membrane is likely to be a highly nonlinear operation in time 
(it is also nonlinear in space, but we shall not be concerned with this aspect). Thus, Abeles 
(1991, section 7.1) argues that, while the average increase in a neuron's firing rate resulting 
from the arrival of n spikes in n different synapses is roughly n times the effect of a 
single spike if the spikes are arynchmnous, the combined effect of these n spikes may be 
considerably larger if the spikes are synchronous or nearly so. Synchrony for that matter 
means that the EPSPs (excitatory postsynaptic potentials) caused by the n spikes overlap in 
time; the dukation of most EPSPs in normal conditions in cortex is of the order of 5 ms, and 
Abeles estimates that on the order of 25 overlapping EPSPS are required to trigger the firing 
of a cortical neuron (with probability 0.5). 

Whether the use of synchronous update is appropriate or not may depend on assumptions 
about the connectiviQ configuration of cortex. It is sometimes argued that synchronous 
update requires a 'central clock,' of doubtful existence. In this paper we will focus our 
attention on networks of the synfire-chain type (Abeles 1982, 1991). As we shall see in 
the next section and in more detail in Appendix B, the activity in a synfire chain organizes 
itself spontaneously in volleys of nearly synchronous spikes propagating along the sequence 
of pools of neurons that defines the chain. Synchronous update is, in a first approximation, 
appropriate for the modelling of this propagation. We shall argue in Appendix B that it 
is also appropriate for a network containing a superposition of synfire chains, under the 
conditions studied in this paper. 

4. A brief review of the dynamics of synfire chains 

A synfire chain is an idealized network, unlikely to occur in pure form in cortex. In its 
simplest version. a synfire chain (Abeles 1982, 1991) is a feedforward network including 
a large number of pools, i.e. layers, of neurons, with a fixed number n of neurons in each 
pool; n is called the width of the chain, and the number of pools p is its length. Connectivity 
from pool i to pool i + 1 is either complete, i.e. n-to-n, or random with a large-enough 
probability of presence of each synapse. Figure 1 is a schematic diagram of a fragment 'of' 
a synfire chain, with incomplete connectivity. 

Unlike feedforward networks used for statistical decision making or pattern recognition 
(e.g. backpropagation nets), synfire chains do not perform transformations or mappings. We 
view them as a mechanism used by the brain to generate spatio-temporal patterns meeting 
the properties listed at the beginning of section 1. 
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Figure 1. A fragment of a synfire chain. The length (number of pools) of the fragment is 
p = 3 and its width (number of neurons in each pool) is n = 4. Connections are feedforward, 
are~allawed only between adjacent pools, and have identicl conduction times ( I  ms): the 
connectivity shown is incomplete. In view of the property of coincidence detection of neurons. 
parallel alternative pathways such as i - j -.+ I and i .-t k + I cmpemte in triggering 
the firing of target neurons (neuron I ) .  

Note first that the pathways that make up a synfire chain cooperate with each other to 
make a neuron fire. Consider, for instance, in figure 1, the two pathways i ---f j -t i 
and i --+ k -+ 1. Any spike emitted by i at time t increases the probability of both j 
and k emitting a spike at time I + 1. This in turn increases the probability of having two 
synchronous spikes impinge on 1 at time t + 2. In view of the property of coincidence 
detection of neurons (section 3), this connectivity graph is more favourable to the firing of 
a target neuron-such as I-than a graph with an identical number of randomly arranged 
connections. 

This mechanism, when operating in a strictly feedforward chain with substantial 
diverging/converging-e.g. complete-connectivity from one pool to the next, generates 
waves of synchronized activity. These waves are synchronous volleys of spikes, which, 
when initiated in a given pool of the chain-at its beginning or at another position-travel 
down reliably and reproducibly to the end of the chain. In this synfire-trunsmission mode, 
all or almost all neurons in a given pool are active at nearly the same instant in time. 

Several approaches can be used to study synfire transmission. In Abeles (1991, Chapter 
7) synchronous update is used. It is demonstrated, under a simple noise model for membrane 
potentials, that if all neurons in pool i are activated simultaneously at a given time t ,  then, 
with high probability, all or almost all neurons in pool i + 1 will be  active at time t + 1. 
Moreover, it is enough to activate a given fraction, called the ignition threshold, of the 
neurons in pool i to reliably trigger synfire activity in pool i + 1. In this sense, synfire 
transmission is stable. The fluctuations of the postsynaptic membrane potentials result in 
temporal jitter in the firing times of neurons. It is demonstrated that in spite of this jitter 
the firing times of the neurons in a given pool i remain tight; i.e. their scatter does not 
increase with i .  Again, this is a property of stability of the synfire pattern as a whole. 
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A more elaborate model, consisting of a system of coupled differential equations 
simulating the evolution of each neuron’s membrane potential and spiking activity, is studied 
numerically in Abeles et al (1993b). and in more detail in Diesmann et al (1995). The 
coupling is brought about by the excitatory synapses making up the chain structure, and 
also by a diffuse inhibitory system which regulates the overall activity level; biologically 
plausible values are used for the different parameters, including the durations of EPSPS and 
lPSPs (inhibitory postsynaptic potentials). Again, the nonlinearity of temporal summation 
by the postsynaptic membrane resulting from the short duration of EPSPS is shown to ensure 
the coherency of the wave of activity throughout its propagation along the chain. 

A synfire chain is an ‘amplifier of synchronism’ (Abeles et al 1993b) in the following 
sense. If one stimulates the first few pools in the chain by increasing their global activity 
levels without specifically imposing coincident firing, a synchronized wave will form from 
time to time and reliably propagate down the chain. This will happen every time the 
number of coincident spikes in one of the stimulated pools exceeds the ignition threshold 
(see above). If the chain is complete (n-to-n connectivity), the ignition threshold is of the 
order of 25 (see section 3). 

We stress again at this point that synfire transmission is not perfecrly reproducible; 
although stability of transmission as well as coherency of firing within each pool are ensured, 
the exact timing of firing of a given pool is subject to a small jitter, i.e. variability from one 
occurrence of a wave to another. The jitter in the timing of the firing of a pool i is due to 
the randomness in the firing of individual neurons in i, which, as said, results chiefly from 
fluctuations of individual membrane potentials. However, due to the temporal averaging 
performed by the diverginghonverging connectivity, the jitter in the time of firing of a given 
pool is smaller than the variability in the firing times of individual neurons. Parameters 
(e.g. the level of noise) can of course be chosen such that synfire transmission is made 
unreliable. Temporal jitter plays an important role in the model proposed (section 6.4); a 
more detailed discussion of stability and jitter in synfire transmission is given in Appendix 
B. 

In sum, a synfire chainjs a feedforward network including a number of pools of neurons 
with divergingkonverging connectivity from one pool to the next. Synfire transmission, 
triggered by suitable stimulation, consists of the stable propagation of a synchronized wave 
of activity along the chain. This spatio-temporal pattern is reproducible but not perfectly 
so. Random activity is present, and may interfere to various degrees with synfire activity. 

5. The model 

In this section we define a synchronous-update dynamics which complies with the 
requirement of conservation of total activity (section 2); we also introduce a simple Hebbian- 
type storage prescription. 

Consider a network of N neurons with binag-valued activity states: x i@)  E (0, I]. Our 
assumption is that, at all t, CL, xi(t) = r (or % r), for a given r << N .  Specifically, we 
saw in section 2 that the average activity rate of a cortical cell is 5 spikeds; therefore, with 
a time unit of 1 ms, r / N  z 5 x 

The input to neuron i is defined by 

where wij is the synaptic weight from neuron j to neuron i. We shall also refer to vi as 
the membrane potential of neuron i. 
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A straightforward synchronous conservative dynamics is obtained by activating at time 
t + 1 those r neurons that have highest potentials &(t + I). We shall term this an ‘r- 
Winners-Take-All’ (r-WTA) dynamics. A literal realization of this dynamics in the brain is 
hardly possible; however, it can be interpreted as resulting, in a first approximation, from the 
regulatory mechanism discussed in section 2 (see also section 7). Indeed, if the inhibitory 
system acts fast enough and at all times maintains the number of active neurons within 
certain limits, one should expect that these active neurons will be, for the most part, the 
neurons with highest excitatory input. The strict r-WTA dynamics, where the active neurons 
at a given time are precisely the ones with highest input, will be investigated in section 6; 
it may be viewed as corresponding to a ‘zero-temperature’ situation. The effect of adding 
noise to the membrane potentials will be examined briefly in section 7. 

We now introduce an important definition for the study of memory storage and retrieval 
in the model. A synfre fink L ,  or simply link (‘divergingkonverging link‘ in Abeles 1991), 
is a collection of synapses from a set of neurons B to a set of neurons A .  We shall assume 
that each of these two sets-not necessarily disjoint-is of size n, with n << N .  In the 
following section we shall deal only with complete synfire links; these include a synapse 
from every neuron j E B to every neuron i E A .  Incomplete links, where a synapse from a 
neuron in B to a neuron in A is present with a given probability H c 1, will be considered 
in section 7; such links are said to have multiplicity m (Abeles 1991) if every neuron in A 
receives contacts from at least m neurons in B and every neuron in B sends contacts to at 
least m neurons in A .  We shall use the notation L = ( A ,  B ) ,  and we shall sometimes say 
that L is active at time t if all neurons in B are active at t and all neurons in A are active 
a t t + l .  

We store a synfire link L = ( A ,  B )  by incrementing all synaptic weights wjj, i E A ,  
j E B.  We shall investigate the dynamics of the network under various connectivity 
configurations resulting from superpositions of links. The rule for superimposing a 
collection of p links L@ = (A”, B”), /I = 1. . . . , p ,  is 

where lIE1 is the indicator function of event E ,  and C is a positive constant which shall be 
set equal to 1. Equation (2) can be rewritten in the more familiar Hebbian form 

where, for any p and any i, $/+ = 1 if i E A’L. or 0 if i # An, and cr- = 1 if i E B’, 
or 0 if i $ B’. This rule is sensitive to the time structure of stored activity patterns; in 
this respect, it is actually closer than.symmetric storage rules to the letter-and probably 
the spirit-f Hebb’s principle of synaptic plasticity (Hebb 1949). Note also that using 
( 0 , l )  variables-rather than [ - I ,  +1} variables as i s  customary in models inspired from 
statistical physics-results in all weights being non-negative; inhibitory synapses, however, 
are implicit in the conservative dynamics. 

We finally remark that the establishment of a synfire chain in cortex is envisaged here 
as a simple memory-storage operation, from the perspective of instructive learning. This 
picture will be revised in section 9.3. 
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6. Behaviour of the model 

This section contains the mains results of the paper. We shall describe the behaviour of the 
r-WTA dynamics as a function of the load of the system, i.e. the number of stored links. 
Although the calculations we shall make are relatively straigthforward, some readers may 
want to skip them. We therefore provide here a brief summary of results. 

6.1. Summary of results 

The situation of main interest to us is one where a number of randomly constructed synfire 
chains are stored. By this we mean that the pools that make up these chains are all chosen 
at random, independently of each other. As mentioned in the previous section, we assume 
that all chains are of width n, i.e. that there are exactly n neurons in each pool. The chief 
result is the following: if the total length p of stored chains, i.e. the total number of pools 
(equivalently. links), does not exceed a certain critical value pc,  storagdretrieval is efficient. 
This means that whenever a given pool in one of the stored chains is active at time t = 1 
the next pool in the chain will be, with high probability, active at time t = 2. Assuming, 
somewhat artificially, that the last pool in the chain feeds back to the first pool, the lifetime 
of a synfire wave is, essentially. infinite. If this cyclic boundary condition does not hold and 
the chain is strictly feedforward, the wave dissolves, i.e. spreads randomly in the network, 
when it reaches the end of the chain. 

Note that at any given time more than one pool will generally be active. The largest 
possible number of coactive pools, hence of coactive synfire waves, is determined by the 
constraint on total activity. Specifically, if we denote by h the number of coactive pools, 
then, since r << N (see above, section 5) and since all pools are random, the h coactive 
pools are essentially disjoint; hence an upper limit is h FL: r l a .  Numerical values will be 
discussed in section 8; we shall see that, typically, 1 (< r l n  << p .  Thus, if at time t 
the activity is concentrated on h of the p stored pools it remains so at subsequent times: 
synfire transmission takes place as described in section 4, which means that the h packets 
of activity propagate along the stored chains. This propagation is robust against noise and 
is reproducible, which corresponds to Properties 1 and 2 of section 1. 

We shall estimate the storage capacity pE (Property 4)  to be about N2/25r.  As mentioned 
above, r / N  i5 5 x thus, pc is of the order of 8N.  This calculation pertains to the 
chains we called narrow in section 1; such chains are not supposed to convey much meaning 
when activated separately, which is typically the case in background activity. It is the 
synchronized activation of a number of such synfire patterns that, we propose, corresponds 
to mental representations as described in section 1. A binding mechanism, ensuring the 
stability of such composite patterns (Property 5 of section I), is discussed in Appendix C. 
No quantitative estimate of the number of composite patterns can be achieved in the present 
framework. However, from a mere combinatorial point of view, this number is exceedingly 
large. 

6.2. Superposition of synfire links 

We store, according to equation (2). a collection of p links LJ’ = (A”, BJ’),  p = 1, . . . , p .  
where all sets AJ’ and BJ’ are drawn at random independently of each other, uniformly over 
all subsets of size n of the set of N neurons. We fix a set of indices M c { 1, . . . , p ) ,  of 
size IMI = h, and denote BW = Up+ B” and A M  = UFEM.A@. We assume that at a 
given time t all neurons in BM are actwe. The size of this union set BM is thus at most 
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r .  To satisfy the constraint on total activity exactly, we activate at time t another r - I &  
randomly chosen neurons. 

We define storagelretrieval to be~efficient if the following is true: for any M as above 
with all neurons in BM active at time t, all neurons in AM are, with high probabilityt, 
active at time f + 1. This requires of course that IdM! < r :  this is realized if the potential 
Vi(r + 1) is larger for any i E dM than it is for any i $ A M .  

The calculation we shall now make underlies all statements on storage capacity made 
in this paper. For a given neuron i in the network and a given set M as above, we compute 
the input K ( t  + 1) to neuron i at time t + 1. We denote this potential VI,u,  to indicate the 
dependency on M. Due to the randomness of A” and B”, p = 1, . . . , p,  the quantity V~,M 
is a random variable. We decompose it into two terms as followsf: 

and 

Consider the situation where neuron i occurs in exactly one of the A’s, p E M. 
It is easily seen that the random variable L l i , ~ ,  when conditioned on this event, is 
deterministically equal to 15’1 = n. If, on the other hand, we condition on the event 
i $ A’, p E M ,  i.e. i $ A M ,  we evidently get U<.M = 0. 

Thus, the first component of the input to neuron i is deterministically equal to n 
or to 0, depending on whether neuron i does or does not belong t o  one of the A% ~r. E M .  

The second component, W ~ , M ,  is a crossralk term, and we wish to estimate its first- and 
second-order moments$. The mean of W ~ , M  is easily calculated 

1 E[wi,~l = E I [ isA. ) l l j rs , ‘ ) I l jsB, )  CN ‘=I $€I1 ..... pl\M 

M 

t The source of randomness is the choice of the sets AV and E’’, p = 1, . . . , p .  

is the same if IBwl c r.  
5 Although Wj,w is not exactly Gaussian. its distribution is bell-shaped. 

For simplicity, we shall assume that c r ,  i.e. that all active neurons at time 1 are in Uw. The computation 
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since the three terms in each product are statistically independent. From (7) we see that 
E[W;,M] = r ( p  - h)n2/N2. Let us denote ql = rpn2/NZ. Since h <( p ,  we have 

Computing the second-order moment of W ~ . M  is not quite as straightforward, for the 
terms in the double sum (6) defining W;:,M are not statistically independent (if they were, 
WI:.M would be a binomial variable, well-approximated by a Gaussian). An approximation, 
however, can be derivedt: 

E[Wi.MI zz 111. 

VX(W~.M) X r ( p  - h)(n2/N2)(l  + n r / N )  

= E [ w j , ~ ] ( l  + n r / N ) .  (8) 
Thus, we have VW(W,.M) x q2, with q~ = q l ( l +  nr /N) .  For biologically plausible values 
of n and r (see section S), nrjN x 0.5; hence the variance of the crosstalk qz is of the 
same order as its mean VI .  

We conclude that, provided f i  << n, the distribution of membrane potentials K ( t  + 1) 
across the network is bimodal. The lower mode, centred around V I ,  is contributed by those 
neurons i which do not belong to any A”, p E M, the higher mode, centred around n + q ,  , 
is contributed by those neurons i which belong to one A”, p E M$. The width of each of 
the two modes is fi. Suppose, for instance, that the separation between the two modes 
is ten times their width: f i  c n/10. There is then virtually no overlap between the two 
modes, and the potentials of neurons in d M  are all, with high probability, larger than the 
potentials of neurons outside of AM; in other words, the deterministic component of the 
input dominates. With high probability, the set of active neurons at time f + 1 then includes 
dM. If, on the other hand, f i  > n, the crosstalk component dominates, and we should 
expect the activity to spread randomly throughout the network at time f + 1. 

Going back to the mechanism implicit in the r-WTA dynamics, namely the regulation 
of firing thresholds, we see that the condition for the activity to reliably propagate along 
a given synfire link L”, p E M, is that the firing thresholds be set appropriately, i.e. at a 
value intermediate between the two modes of the distribution of membrane potentials. 

In total, storagdretrieval is efficient if and only if the standard deviation of the crosstalk, 
f i , is small with respect to the link width n. Let us now denote K = n/&; K measures 
the relative separation between the two modes in the distribution of inputs; note that K is 
a decreasing function of p :  

K = n/, /rp(n2/N2)(1 + n r / N ) .  (9) 
If we ignore the factor 1 + nr /N  in the denominator, this simplifies into K x NI,@ We 
may predict that there is a critical value K,, probably smaller than 10, such that if K z K~ 

the two modes are well separated and retrieval is efficient. With the above approximation, 
the condition K > K~ is equivalent to p < N2/K:r. 

We thus obtain a critical, or “ a l .  load pE zz N2/K:r. This maximal load, or 
storage capacity, is the number of synfire links L” = (A”, B”) that can be stored and 
retrieved without destructive interference. If, for instance, the critical value K~ is 5 and 
assuming that r / N  = 5 x we obtain pc  = SN. We will return soon to the issue of 
storage capacity (section 6.3), and confirm this, estimate by numerical methods!. 

t The proof is lek to the reader. Hints: define X” = E;=, l~jroM~lysa,z) and note that X’ is a hypergeometric 
random variable. of mean n r l N  and v5ance less than and almost equal to nr /N;  note also that, conditioned on 
lBwl = r .  the random variables X”. X”, f i ,  fi’ # M , p  # fi’, are statistically independent. 
$ Neurons belonging to more than one A” are rare. since n < N .  We may thus ignore the higher modes. 
$ As mentioned, the calculations of the present section are performed for complete links only. Incomplete links 
will be dealt with in section 7. 
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6.3. Superposition of chained synjre links (synjre chain) 

To justify the assumption made in section 6.2 that the set of active neurons at time f has a 
large overlap with a set of the form EM, we need to make further assumptions on the stored 
synfire links L”, /L = 1,. . . , p. 

One may want to consider the case where siored links are re@xive, i.e. A’ = B’, 
p = I ,  . . . , p .  Note that synaptic weights are then symmetric, as in most associative-memory 
models. The analysis carried out in the previous section still applies?: storagehehieval 
is efficient if p < pc. If this condition is met, the activation of any set of the form 
AM = UILEM A” = UCEM B” and of size r is now a point attractor$. Retrieving a 
stored link now takes the meaning of having the state converge to a point attractor, as in 
conventional associative-memory models. The number of different point attractors is the 
number of subsets of size h < r/n of the set (1, . . . , p}. 

However, we argued in section 2 that point attractors on the I-ms time scale are 
biologically unrealistic, since cortical neurons fire at rates much lower than saturation. 
Therefore, the assumption A’ = B”, p = 1, . . . , p ,  appears to have little biological interest. 
We shall in section 9.4 discuss another, more realistic, situation in which the present model 
comes close to classical associative-memory models. 

Rather than taking A’ = B”, we shall in this section assume that the p links are chained 
with each other as follows: B”+’ = A”, p = 1,. . . , p -  1. The links are otherwise random, 
as in section 6.2.~ This results in the storage of a synjre chain, of width n and length p .  In 
cases of interest, izp >> N ,  and each neuron occurs many times in the chain. 

Based on the results of section 6.2, the analysis of the r-WTA dynamics in the synfire- 
chain case is straightforward if the variance of the crosstalk term 

in = rp(n2/NZ)(1  i nr /N)  (10) 
is small enough with respect to the square of the chain width n2, equivalently if K t K ~ .  

equivalently p < pc,  the probability of failure of transmission along any given link of the 
chain is small. Thus, if a given pool B” is fully activated at time t = 1 (all its n neurons 
are active), all neurons in B’+’ will, with high probability, be active at time t = 2. If, at 
t = 1, a number h of the p links of the chain are fully activated, these h activity packets 
will, from then on, propagate reliably along the chain, following its linear topology. 

If, on the other hand, storage capacity is well exceeded, i.e. if IC is substantially 
smaller than K,,  the activity, even when initially concentrated in a number of fully active 
pools, spreads rapidly throughout the network and subsequently reverberates in a near- 
random fashion. The system is then overloaded: the random crosstalk component W, 
in V, dominates. because the two modes in the distribution of V, largely overlap. This is 
essentially a case of random connectivity. We argue in Appendix D that the r-WTA dynamics 
in a random graph is characterized by lack of long-range order. Specifically, the correlarion 
range of the dynamics on a random graph is short. In contrast, synfire transmission, which 
takes place if K > K ~ .  is characterized by long-range order. 

When the system is around the critical point K ~ ,  one should expect waves to travel 
coherently for a positive but finite time and distance. This situation is similar to the one 
described in Abeles e t  a1 (1993b) under the name reverberating synjre chain, i.e. ‘synfire 
chains in which neurons participate in several positions.’ A reverberating synfirz chain 

7 The probability that a given pair (i, j )  belongs to B given link L” = (Au. As). i.e. i E A” and j E A’. is now 
n(n - I ) / N ( N  - I )  rather than n 2 / N 2 ;  for parameter values of interest ( N . n  > I). these are not signihcantly 
different. 
$ The activation of a set AM of size smaller than I is also a stable slate, if the rest of the activity-which is 
random-is disregarded. 
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displays a behaviour that is intermediate between perfectly stable synfire transmission and 
random activity. In the reverberating chain described in Abeles et al (1993b), a given 
neuron occurs on average mice in the chain. In the present model with p ir pe .  each 
neuron occurs about pcn/N % 8n times. The overlap between links is thus considerable. 
For instance, with chain width n = 100 (see section 8) and complete links, the overlap is 
800. 

6.3.1. Numerical experiments. Figures 2-5 show the results of simulations performed on 
a network of N = 10000 neurons, with chain width n = 10 and total activity r = 500. 
Note that the ‘biological’ relationship r / N  = 5 x does not hold here. The maximal 
number of coactive pools is r / n  =~50. In figure 2, the load, p ,  is 5700, corresponding to 
K = N / , / r p ( l  + n r / N )  = 4.84. For this value of K there is a slight overlap between the 
two modes of the distribution of inputs vi, so that synfire propagation is not perfectly stable: 
the system is slightly overloaded. In the simulation corresponding to figure 2, h = 27 waves 
were triggered in the network at t imet = 1. The figure shows the amplitudes of 10 of these 
waves as they travel along the chain for a period of time of length 100. Figure 3 shows 
the same simulation over 1000 time steps: by the end of this period, all of these 10 waves 
have died out. 
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Figure 2. Synfire-wave msmission in a slightly overloaded system. A chain of width n = 10 
and length p = 5700 is stored in a network of N = IO000 neurons. with r = 500 neurons active 
at any given time. The curve shows the amplitudes of 10 waves (the 10 mces are slightly offset 
from each other). out of 27 waves present at time t = 1. Under these paxatnelric conditions, 
synfire transmission is not perfectly reliable: one of the 10 waves dies around time t = 35. The 
corresponding mce from I = 40 to 1 = 100 shows an meorrelated binomial random process, the 
summed activity of a wllection of n = 10 neurons where each neuron is active with probability 
rlN = 0.05. 

As noted, a good indicator of the stability of synfire transmission is the correlation 
range of waves. Equivalently, one may measure the average duration of waves along the 
chain. To achieve a robust measurement of this duration, we first perform a moving (time 
and space) average on the amplitude of each wave (with a window of length 10); we then 
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Figure 3. Same simulation as in figure 2. but over 1000 time steps. All 10 waves have died 
out by time f = 620. 
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Figure 4. Histogram of durations of synfire waves. Waves are recorded during a 6000-step 
period. with parameters as in figures 2 and 3. The solid line shows the fit by an exponential 
distribution. 

apply a threshold of n/2  to decide whether or not a wave is present at a given point of 
the chain, at a given time. All waves that occur during a long period of time are recorded 
in this way, and a histogram of wave durations is constructed. Figure 4 shows one such 
histogram, for the same load p = 5700, i.e. K = 4.84. As expected, wave duration, which 
is then finite (because the system is slightly overloaded), obeys an exponential distribution. 
Figure 5 shows the mean of this distribution as a function of K, when p is varied. One 
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observes a sharp transition at a critical value K~ x 5.1, corresponding to pc x 5000. When 
K > K ~ .  i.e. p < pc,  wave duration is virtually infinite; synfire propagation then takes place 
in a perfectly reliable way. 

N=IOWO, n 4 0 .  N O 0  
I I 

600 ’0° t 

Figure 5. Critical behaviour of the synfire-superposition model. The curve shows the mean 
duration of synfire waves (i.e. the mean of the distribution shown in figure 4) as a function of 
K, a parameter that varies inversely with the load. i.e. the lcngth of the chain stored. x relates 
to the distribution of membrane potentials in the network it measures the separation between 
the modes corresponding to crossralk and erosrralk plus synji.. inppur. The curve shows a sharp 
transition at a critical value K,. With parameters as indicated an top of the figure. rE Fii 5 .  I; this 
corresponds to a chain length of a b u t  5000. The critical value of x is always near 5. 

Figure 6 shows the behaviour of the network under the same load conditions as in 
figures 2-4 (K = 4.84), but this time with h = 50 waves (the maximal number) at time 
f = 1. These 50 triggered waves have all died out by the time t = 2000. However, 
they are partly replaced by other waves that form spontnneously at random positions along 
the chain. This results in a ‘thermodynamic’ equilibrium (remember that the dynamics is 
actually deterministic and that the only randomness so far is in the connections), whereby 
the number of waves fluctuates around a constant value. 

The dependence of the average size of the equilibrium wave population on K is shown 
in figure 7 (the number of waves at time t = 1 in these simulations is h(1) = 1). Again, 
one observes a sharp transition at the critical value K,. Note that even when waves are 
perfectly stable, i.e. when K is well above the critical value K ~ .  the population size does not 
reach its theoretical upper bound r l n  = 50. The reason for this is that a permanent loss of 
waves takes place at the end of the chain?. 

Figure 8 illustrates this situation for p = 3600, i.e. K =-6.09. This K is well above 
the critical value, so that waves are perfectly stable and disappear only when they reach 
the end of the chain. In the simulation shown in figure 8, only one wave is active at time 
t = 1; this wave, triggered at the beginning of the chain, is exactly in the middle of the 
chain at time f = 1800. Note also the very rapid increase of the number of spontaneous 
waves in the first few iterations. The total, number of waves eventually fluctuates around 

t If the chain is cyclic-see b e l o w 4 e  upper limit r / n  is reached when K > K ~ .  
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Figure 6. Dynamics of waves in a slightly overloaded system (same parameters as in figures 
2 4 ,  K is slightly below K ~ ) .  Of an initial collection of 50 waves triggered at time t = I ,  all 
have died out by time f = 2000. Other waves form spontaneously at random positions and 
times, resulting in an equilibrium papulation around 27. 

Figure 7. Average size of population of spontaneous synfire waves, as a function of Y. The 
curye shows a critical behaviour, also manifest in wave duration (figure 5).  

45, the combined result of a death process occurring at the end of the chain and a birth 
process occurring at random positions along the chain. 

In sum, provided K > K ~ ,  synfire transmission is a stable state of the dynamics (Property 
l ~ i n  section 1). As mentioned in section 1, this notion of stability is somewhat different 
from the one used in traditional associative-memory models, for a wave that reaches the 
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Figure 8. Dynamics of wwes under stable synfire transmission. The length ofthe stored chain is 
p = 3600. resulting in Y = 6.09. well above the critical value, Synfire transmission is therefore 
stable, i.e. perfectly reliable. A single wave triggered at the beginning of the chain at time I = 1 
is still alive at time t = 1800. Other waves form spontaneously at various positions along the 
chain. resulting in an equilibrium population of about 41; waves die when they reach the end 
of the chain. Under the conswative dynamics used in the model, the activity corrcsponding to 
a defunct wave (IO active neurons) spreads randomly throughout the network it eventually is 
reassembled into a new wave 

end of a chain dissolves there. Stability in the usual sense requires feedback. For instance, 
one may impose the cyclic boundary condition AP = B ] ;  a biologically more plausible 
situation will be discussed in section 9.4. Another important observation is that random 
activity in the network organizes itself spontaneously into synfire waves, providing a form 
of background synfire activity. As we shall shortly see (section 6.3.2), the occurrence 
of this phenomenon depends somewhat on the setting of parameters. When this form of 
self-organization takes place starting from a random initial state, the distribution of inputs 
vi, initially unimodal. progressively becomes bimodal. The synfire regime then acts as an 
artractor, whose attraction basin is the whole state space. 

Note that it is in principle possible to have a number h of coactive waves larger than 
rfn if these waves are partial, i.e. if only r j h  (< n) neurons, on average, are active in 
any given pool. However, numerical simulations show that this situation is unstable. The 
r-WTA dynamics introduces strong competition between partially activated waves, so that, 
up to small fluctuations, waves are always fully activated. 

6.3.2. Stability analysis in the mean. In order to gain further insight into the behaviour 
of the network, we now consider the following argument, inspired from Abeles (1991, 
Chapter 7). Synfire propagation along a given chain is stable provided the activation of 
n l  < n neurons in each of a collection of pools BP, p E M ,  elicits with high probability 
the activity of more than nl neurons in each of the pools BP+', p E M .  This condition can 
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be analysed fairly easily in the mean. Such an analysis consists in computing the averaget 
number n2 of neurons active in the pools W+', p E M, as a function of n,; we shall term 
this function the synfire transmissionfuncrion, and denote it n2 = @(nl). If @ ( n l )  > n1 
we know that, in the mean, the amplitude of the waves will grow; propagation is then, on 
average, stable. The larger @ @ I )  - nl, the more reliable the propagation. 

Denote by F(u) the (cumulative) distribution function of the crosstalk term Wi,M 
(section 6.2). The input to a neuron i chosen randomly in the network obeys a mixture 
of twot probability distributions, corresponding to the cases i A M  and i E AM. The 
distribution function for this mixture is G(u) = ( N  - hn)F(u) + hnF(u - nl),  since the 
deterministic component of the input has now amplitude nl rather than n. The r-WTA 
dynamics will, in the mean, activate the neurons whose inputs are larger than a fhreshold 
value vo, satisfying G(u0) = N - r.  The fraction of these active neurons that fall in AM 
is, in the mean, hn(1 - F(u0 - ni)). Therefore, e&h pool A" in AM contains, on average, 
n2 = n( l -F(uo-n l ) )  active neurons at t imef+l.  We thus get: @(nL) = n ( l - F ( u o - n l ) ) ,  
where u~ is the number that satisfies G(u0) = N - r,  with G(u) as defined above. 

N=lW00, m10, r=5W. h S 0  

Figure 9. Synfire transmission functions. The curves show, for x ranging from 1 to 10 by 
increments of 1 (high x corresponds to low load), the expected number of neurons active in a 
given target pwl  of the chain as a function of the number of neurons active in the corresponding 
sending pool. If the upper p a n  of the curve is well above the identity (dotted line) the average 
amplitude of the wave grows as it propagates along the chain; hence synfire transmission is 
stable. This diagram shows that K should be larger than 5 for stable synfire transmission to 
occur. confirming the simulation results (figures 5 and 7). 

Figure 9 shows the curve n2 = @(q) for the usual parameter values N = 10000, n = 
10, r = 500, h = 50, and K ranging from 1 to 10 by increments of 1. To derive these 
curves, the distribution of the crosstalk term W~.M was approximated by a Gaussian of 
mean = n Z / K 2  and variance q~ = ql(1 + n r / N ) .  As noted above, stability of synfire 
propagation requires that a large-enough portion of the curve n2 = +(nl )  be well above 

t As usual, averaging is performed with respect to the random connectivity of the network, resulting from the 
randomness of the sets B'; the dynamics itself is deterministic, except for tie breaking. 
t Ignoring again neurons i thal belong to more than one pool A" = E@+] ,  fi E M. 
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the identity line n2 = nl. We see from figure 9 that this condition is satisfied, roughly, for 
K > 5 ,  confirming the results of the numerical experiments (section 6.3.1). We also see 
that, for this setting of parameters N ,  n, r and h,  as soon as K is large enough for stable 
propagation to take place, the curve 112 = q5(nl) is above the identity line. This is true even 
for small values of nl;  small fluctuations are therefore able to grow into fully activated 
waves, which corresponds to the formation of spontaneous synfire waves described above. 

N=lOOW.n=10. r=5W. h=l 

Figure IO. Synfire msmission functions for a single wave. All parameters me the same a5 in 
figure 9. except that the number of waves an the chain is now h = 1 instead of h = 50. All 
curves are shifted upwards, resulting in more stable propagation. 

Figure 10 shows a similar family of curves, this time with h =' 1 rather than h = 50. 
These curves are the synfire transmission functions in the case of a single synfire wave; 
this single wave accounts for only 2% of the total activity in the network, the rest being 
randomly distributed. Figure 10 shows that the single-wave case is more favourable than 
the 50-wave case (figure 9): all curves, in particular those for K around K ~ ,  are shifted 
upwards. The reason for this lies in the competition inherent in the PWTA dynamics; when 
fewer waves are active, fewer neurons compete. 

As a consequence, if the system is slightly overloaded, it will 'react' to a large number 
of coactive waves by lowering this number until the remaining waves are more stable (by 
assumption they can never be perjktly stable, since the system is overloaded). This is 
observed, for instance, in figure 6 where the size of the total wave population (the sum 
of the two curves), equal to 50 at time t = 1, decreases rapidly and eventually fluctuates 
around 27 (from about t = 500). 

Since, on the other hand, waves form spontaneously if their number is 'too small' (see, 
for instance, figure S), we see that the operation of the system around the critical point 
K Ft: K~ is characterized by the self-regulation of the number of synfire waves present at 
any given time. There is an asymptotic h' = h*(N, n ,  r, p )  such that the system maintains 
the number of waves h approximately equal to h'. The variation of h' as a function of 
K is precisely the curve shown in figure 7 (in the case of a strictly feedforward chain). If 
the system is overloaded (K < K ~ ) .  h' is less than the theoretical limit r /n  (h* = r/n for 
K > K ~ .  if the chain is cyclic). 
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Figure 11 shows the synfire transmission curves for a different parameter setting. The 
cnrve is now below the identity line for small values of nl. In a case like this, 
spontaneous waves do not form as easily; spontaneous synfire activity may require additive 
noise (see section 7). Alternatively, external stimulation may be used to trigger synfire 
activity. 

Figure 11. Synhre transmission functions whose lower part remains under the identity line. 
Parameters are the same as in figure IO, except that the total activity in the network is now 
r = 50 instead of I = 500. Wtth this parameter setting all curves start out below the identity 
line. This makes it more difficult for a small fluctuation to develop into a full-fledged synfire 
wave. 

Calculations were performed to investigate the stability conditions and estimate the 
critical value K, for a broad range of parameters. It was found that, for a domain that 
largely includes all parameter values of biological interest, the critical value K~ does not 
vary much and stays around 5. As mentioned above, this results in a storage capacity 
pc x 8 N ,  under the assumption r / N  = 5 x 

6.4. Multiple synfire chains 

We just saw that with plausible parameter values p is of the order of N .  This is a very large 
number (see section 8) and the existence of a chain of such length in cortex is unlikely. 
More plausibly, the p stored links form a number of separate chains, which amounts to 
saying that the relationship B”+’ = A’ holds for most but not all p,  p = 1, . . . , p - 1. Let 
us assume, for simplicity, that p I  chains are stored, all of same length p 2 ,  so that p p1p2.  
We may again assume cyclic topology for each of the p I  chains, if we wish to obtain true 
stability. 

The condition for efficient storage is, as before, p < pc3 i.e. K > K ~ .  Storage capacity, 
measured in terms of chains of length p2 rather than links, is pJp2. When this capacity is 
respected, a stable state, or attractor, consists of a number h 6 r / n  of  waves propagating 
along the pl  chains, in any possible combination. In particular, a given chain may cany 
several waves at different positions (see section 8 for numerical considerations). 
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A network consisting of a superposition of synfire chains respecting storage capacity 
meets Property 2 of section 1, which is to say that the synfire pattems it supports are reliably 
reproducible; an appropriate stimulation of any of the stored chains at a given time will 
elicit stable synfire activity in that particular chain. As described in Abeles (1991, section 
7.5; see also Abeles etal 1993b). stimulation can consist of increasing for a certain duration 
thepring rate of neurons in a few pools of the chain; this increase should be strong enough 
to produce, from time to time and with high enough probability, a synchronous activation 
of enough cells in any of the stimulated pools. 

We have proposed elsewhere (Bienenstock 1991) that synchronization of synfire 
propagation in coactive chains may be a mechanism for binding. An important requirement 
is that binding be dynamical, i.e. reversible: neural representations of mental entities should 
be allowed to CO-occur either in a bound or an unbound state, or in various different 
binding configurations. In the present model, however, coactive chains are synchronized 
by construction. Specifically, if pool i in one chain and pool j in another chain are both 
active at a given time t ,  pool i +k in the first chain and pool j + k  in the second chain will 
both be active at the same time t + k for k z 0. This model does not account for dynamical 
binding. 

We saw, however, in section 4 that in reality synfire transmission is reproducible only 
up to a certain amount of temporal jitrer (Abeles 1991). Thus, the propagation in coactive 
chains should not be synchronized, unless appropriate synaptic coupling induces such 
synchronization. In Appendix B we modify the synchronous update scheme in such a way 
as to allow for temporal jitter in the firing of each neuron. The synchronization of coactive 
chains will then depend on the existence of synaptic coupling between them. We demonstrate 
then in Appendix C that weak coupling is enough to induce reliable synchronization, i.e. to 
ensure the stability and reproducibility of composite pattems. 

7. Behaviour under noisy conditions 

We saw in section 6.2 that if storage capacity is respected and if activity at time t is 
concentrated on a union of stored links U ,  = UpeM B”, the distribution of Vi(t + 1) is 
bimodal; the lower mode is contributed by cells i not in AM = UWEM A’, while the higher 
mode is contributed by cells in AM. 

These are favourable conditions for a robust operation of the regulatory system 
postulated in section 2. Remember that this inhibitory system, implicit in the r-WTA 
dynamics, is likely to operate with a range of time constants somewhat shorter than the 
time constants involved in the excitatory feedbackt. If the distribution of Vi(t + 1) is 
bimodal as described above, the task of the regulatory system is merely to keep the effective 
firing thresholds of all excitatory neurons within an interval, corresponding to the separation 
between the two modes of K. Large fluctuations in the total activity rate will be avoided. 

This reasoning is valid only in the vicinity of a synfire attractor, when all the activity 
in the network is already concentrated on a set of neurons of the form U M  = UpEM B” for 
some stored B ~ s .  If, on the other hand, activity is distributed randomly in the network, the 
distribution of Vi is unimodal, and one should expect somewhat chaotic behaviour. Thus, 
the fairly rapid convergence of a random activity state to a synfire attractor, as described 
in section 6.3 under the idealized r-WTA scheme, would, in reality, be considerabIy slower. 

t The lerm ‘feedback‘ is used here because globally the population of excitatory neurons feeds back on itsel? 
each neuron occurs many times in the collection of stored chains. This does not conlradicr the ~micTOSlNClYTa~’ 
fact lhal chains are strictly feedfonvard. 
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However, our proposal (see section 8) is that at any given time in the life of a normal 
functioning brain codca l  activity is essentially all of synfire type$. Thus, in practice, the 
problem of ‘bootstrapping’ the system into the synfire regime does not arisc. 

In accord with these remarks (see also Abeles 1991, section 7.4), we may conclude that, 
under normal operating conditions, the main source of perturbations in synfire propagation 
is the fluctuation of the individual membrane potentials, resulting in particular from input 
through synapses that are not part of stored chains. To investigate the effects of such 
perturbations on the dynamics, a random term is added to the input Vi@), independently for 
all i and t .  

Figure 12 shows the results of such a simulation, with the usual parameters (see section 
6.3) but with p = 3000, hence K = 6.66. In the absence of noise, this value of K is well 
within the stability domain. Noise is uniformly distributed over the interval [0, b], and the 
figure shows, as a function o f t  and for various values of b, how many of a collection of 50 
waves present at time 1 are still present at time t .  As expected, one observes a progressive 
degradation of the reliability of synfire transmission with increasing noise levels. Note 
that synfire transmission is perfectly stable for b = 2, comesponding to a situation where 
the amplitude of the fluctuations of the membrane potential of any neuron reaches 20% of 
the amplitude of the ‘synfire input’ to that neuron, coming from the previous pool in the 
chain. In Appendix D we contrast this situation with the high sensitivity to noise in case 
the network is a random g r a p h - x  for that matter an overloaded superposition of chains. 

Figure 12. Synfire transmission under noisy conditions. White noise, uniformly distributed in 
the interval [O, b]. is added to the membrane potentials of all neurons. The e w e s  show, for 
various values of b, the number of synfire waves still presmt at time I, out of a collection of 
50 waves triggered at time 1. 

A different kind of noise that may affect the behaviour of the system is ‘quenched‘ 
noise, in the form of a dilution of the connectivity graph. Thus, consider a randomly diluted 
connectivity graph, with dilution coefficient i( < 1. Under the assumptions of section 6.2, 

1 The proportion of ‘computation-related‘ waves as compared to spontaneous waves may, however, vary from 
one instant to another. 
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both the deterministic and the crosstalk components in Vj(t + 1) are now smaller by, a 
factor n. Therefore, since storage capacity is computed by comparing J?I, the square root 
of the average crosstalk, to the deterministic component, the dilution of the connectivity 
graph results in a drop of storage capacity by a factor Jj?. This prediction is confirmed by 
numerical experiments. 

8. Numerical considerations 

In this section we discuss various aspects of the model in view of a biologically plausible 
specification of parameter values. We stress again that these numerical values are mere 
orders of magnitude, as precise estimates would have little biological significance (see 
section 1). Anatomical and physiological data reported in this section are widely accepted 
figures, quoted, for instance, in Abeles (1991). 

Note first that stored chains (or braids-see Appendix A) could be arbitrarily wide; 
however, a lower bound for n can be derived. We saw in section 3 that it takes on the 
order of 25 temporally overlapping BPSPs to trigger the firing of a cortical cell. The dilution 
coefficient within a local population of cortical pyramidal cells (see below) is estimated to 
be K % 0.25. Including in the model a number of patches of cortical tissue from distant but 
mutually interconnected areas (see Appendix A) should not result in a much different value 
for n. Thus, the lower bound for the width of a chain, where all afferents to a given neuron 
originate from a single pool of coactive neurons, is of the order of n = 100; this results 
in a multiplicity m % 25, as required. In the case of a braid (see Appendix A), where the 
afferents to a given neuron originate from neurons that fired at different times, n could be 
smaller. In the rest of this section and unless otherwise specified, the term chain will be 
short for chain or braid. 

We shall say that a chain (or link, or braid) is narrow, if its width is equal to the lower 
bound n = 100 : this is the smallest width that supports stable synfire activity. Broad synfire 
patterns will be obtained from narrow ones by composition, i.e. synchronized coactivation 
(see below). 

The number of coactive synfire links at any given time (section 6.2) is at most r / n ;  an 
upper bound for this number is then r/100 = 5 x W 3 N / 1 0 0  = 5 x IO-’N. The storage 
capacity (section 6.3), corrected for the finite dilution n (section 7), is pc % 8N& % 4 N .  
Thus, a very small fraction of all stored links-about 1 in 105-are active at any given time. 
With these parameters and when p = pc, the ratio of the total synaptic weight afferent to a 
given neuron as compared to the synaptic weight contributed by a single link on this neuron 
is on average pcn /N % 400. Equivalently, one neuron participates in about 400 distinct 
stored synfire links. There is thus substantial overlap between stored memories. 

A numerical value for pz, the length of stored chains, could be taken to be the lifetime of 
a ‘mental entity’ in working memory, inasmuch as one wishes to specify such a numerical 
value (see section 1 for reservations concerning such attempts). If we set p2 = lo3, 
corresponding to an entity lasting 1 s, the number of narrow synfire patterns of length pz 
that can be stored in a network of size N is PN, with p % 4 x 

In all likelihood, a large fraction of the cortical activity at any given time is background 
activity, not directly related to any specific task or mental process in which the brain may 
currently be engaged. The figure of 5 x spikeslms used here as mean cortical spiking 
rate should be viewed as resulting mostly from this background activity. Elevated firing 
rates related to specific computations or processing probably involve, at any given instant 
of time, a small fraction of all cortical neurons and therefore contribute little to the total 
activity. 
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We propose that background activity takes the form of synfire waves propagating 
randomly along stored chains. We moreover propose that these background synfire waves 
are independent Poisson-distributed events; there is little synchrony between background 
waves that propagate simultaneously along different chains, and there is little temporal 
repetition of synfire activity along any given chain. We shall propose in section 9.3 that 
background, or spontaneous, activity may play an important role in the establishment and 
stabilization of narrow synfire connectivity. 

We posit that the neural activity associated with a specific computation or processing at 
a given time differs from background activity in all three respects mentioned above. First, 
it involves only a small fraction of all chains that are active at any moment: as seen above, 
however, a chain may be distributed on a number of distinct, spatially distant, cortical areas. 
Second, as proposed in section 1, it is characterized by the synchronization of the synfire 
patterns that take part in it. Finally, it involves the repeated activation of chains, so that a 
chain that takes an active part in a computation is likely to carry, at any given time during 
this computation, several waves at different positions. 

This latter proposal is not logically necessary; it is motivated merely by the observation 
that during the performance of certain sensory-motor tasks certain cortical cells fire 
reproducibly at rates higher than background (see the discussion in section 9.4). Data 
from Abeles et al (1993a) support the assumption that all spikes that contribute to such 
elevated firing are part of synfire patterns. If we assume that cells rarely occur more than 
once in a chain of length pz = IO3, the firing rate of a cell in an activated chain will be 
roughly equal to the number of waves currently travelling on this chain. Accordingly, we 
may expect the number of waves carried by an activated chain to be widely distributed, say 
between 1 and 50. Such repeated activation may in particular result from stimulating the 
chain by increasing the rates of activity of its first few pools (see section 6.4); as long as 
this stimulation is in effect, waves form at random times-under constraints imposed by 
neuron refractoriness. 

If we take. somewhat arbitrarily, 20 to be the average number of waves on such 
an activated chain of length 1 s, and if we assume, even more arbitrarily, that a given 
computation at a given time involves about 1% of all of cortical activity (of which 99% 
is then background), we obtain a number of computation-related coactive chains equal to 
r / ( n  x 20 x 100) c 2.5 x 10-*N. This is about times the total number of stored chains 
of length 1 s,  since the latter is ON with f? x 4 x 

If we now set N = IO", which corresponds roughly to the collection of all cortical 
pyramidal cells, the following picture emerges. 

A collection of randomly overlapping narrow chains is stored in the network. Each 
such narrow chain carries a stable, i.e. reproducible, spatio-temporal pattern: this pattern 
is a synfire wave, defined on the 1-ms time scale, of variable duration, of the order~of 
1 s. Each pattern activates about IO5 neurons per second, and the total store of narrow 
patterns is worth about 4 x lo7 seconds, implying an overlap of about 400 patterns per 
neuron. Background activity takes .the form of isolated waves, travelling randomly on 
narrow chains independently of each other. About 5 x lo5 such waves are present in cortex 
at any given time; they result in a global mean activity rate of 5 spikes per second and per 
neuron; each stored narrow pattern is 'rehearsed' in this ,way on average once every 80 s. 
The activity related to a specific computation performed at a given time takes the form of 
the composition, or synchronized coactivation, of a highly specific collection of about 250 
narrow chains. (This last figure in particular is quite imprecise.) Such a coactivation of 250 
narrow synfire chains in a synchronized, or bound, mode can be viewed as the elicitation 
of a broad synfire pattern, of width 2.5 x 104, involving 2.5 x IO7 cells per second, i.e. on 
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the order of one thousandth of all pyramidal cells. These cells fire at various rates, with an 
average of 20 spikesk, which contributes no more than 1% to global cortical activity. 

Attempting to quantify the behaviour of the model beyond this point would hardly be 
meaningful. The number of composite entities that are possible from a mere combinatorial 
point of view is, for all practical purposes, infinite (see Property 5, section 1). 

There are, however, specific constraints on Composition, which come from the 
requirements of stability and reproducibility of a composite construct, i.e. of a dynamically 
bound broad chain. The stability and reproducibility of a composite entity, i.e. of a pattern 
of synchrony between waves (Appendix C), results from synaptic coupling between the 
chains that support these waves. Such coupling is established in the course of episodes of 
learning, when dynamically bound composite constructs are inscribed in long-term memory. 
Only a very small fraction of the compositions that are possible apriori, i.e. from a mere 
combinatorial point of view, are actually stable and reproducible (Property 5, section 1). 

Note that saturating the network in terms of narrow synfire links entails the reinforcement 
of a total number of synapses of the order of 4Nnm, i.e. an average of 4nm synapses per 
neuron. With parameter values as above, 4nm X 4 x 100 x 25 = 10000, roughly of the 
order of the number of synapses made or received by a pyramidal cell. 

The distinction between narrow and broad synfire patterns is somewhat arbitrary. The 
model merely predicts the existence of an optimaI width for stability of synfire activity. 
Patterns that are too narrow will be unstable because they do not meet the requirement 
of temporal overlap of converging EPSPS. Wide patterns are composite constructs, which 
are less stable, occur less frequently, but convey more meaning, i.e. interact with higher 
specificity with other patterns. 

Note finally that we assumed in all of the above that cortical connectivity can be well- 
approximated by a randomly diluted graph. However, connectivity across large cortical 
distances is far from random. It is estimated that about one half of the cortical synapses are 
produced locally, while the other half originate from long-distance axons-mostly of cortical 
origin-that reach cortex from the white matter. Further, the connections established by 
long-distance axons are by no mean.s scattered uniformly throughout cortex. On a gross 
anatomical scale, a given cortical area establishes mutual connections with only a limited 
number of other cortical areas; on a finer resolution, nearly all corticocortical projections 
display some spatial periodicity, or segregation into smdl patches-generally interdigitated 
with other projections. 

We could of course limit the range of application of the model to small volumes of 
cortical tissue where connectivity can reasonably be considered random. For instance, 
the local axonal arborization emanating from a given pyramidal cell covers a volume of 
about 0.5 mm3. which contains about N = 2 x IO4 pyramidal cells. The assumption 
of random dilution is probably a good approximation for such a small volume, and the 
dilution coefficient for this local population is, as mentioned above, JT FJ 0.25. However, 
as explained in Appendix A, the model is meant to account for brain functions that are 
likely to involve multiple, mutually distant, cortical sites. This requirement is not easily 
reconciled with the assumption that different synfire links are independent random subsets 
of the network. Similarly, stabilizing a given composite synfire pattern is possible only if 
the required circuitry is available. 

These remarks, however, are chiefly quantitative. The qualitative predictions made in 
this paper are likely to be essentially correct, if the assumptions listed in section 1 (items 
a-e) hold true for cortex. 
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9. Discussion 

This paper proposes that the microstructure of cortical connectivity is a superposition of 
synfire chains. We presented a model based on this proposal, which shares several features 
with other models of cortex: persistence (stability) of states over the 1-s time scale; long- 
term memory; learnability; large storage capacity. Three main additional considerations 
motivate the synfire-superposition assumption: the compositionality of cognitive functions; 
the existence of reproducible tightly timed spike patterns in cortex; the need for robust 
regulation of global cortical activity around low values. 

9.1. Complex cortical events 

We first discuss the role played by accurately timed spike patterns in cortex. For the purpose 
of this discussion, we shall use the term cortical event to refer to any pattern of spikes that 
exhibits the following two features: (i) it is accurately timed on the 1-ms scale; (ii) it tends 
to reproduce. Further. we define-omewhat loosely-an elementary cortical event as one 
whose total duration does not exceed a few milliseconds, the typical conduction time in 
cortex; cortical events that extend over longer time spans will be termed complex. Based on 
evidence that there exist complex events in cortex, we shall argue that the cortical network is 
closer to a superposition of synfire chains than to a random graph. We shall also argue that 
random connectivity does not allow for robust regulation of global activity rates, whereas 
synfire connectivity does. 

Cortex is distinguished by a rich recurrent connectivity. whereby a given pyramidal 
cell may be presynaptic to lo4 or more other pyramidal cells. Of those, many may be 
physically distant from the presynaptic neuron, and from each other. Moreover, long- 
distance axons nearly always travel through the white matter and are myelinated, hence 
conduct with relatively high velocity and little time jitter (exceptions are Martinotti and 
superficial horizontal-axon cells, whose roles, however, are unclear).  if one neglects 
the possibility of transmission failures at axonal bifurcations, it may be concluded from 
these observations that any spike emitted by one given pyramidal neuron will produce an 
accurately timed constellation of EPSPS on a specific collection of cells, which are typically 
distributed across several cortical areas. 

One may then entertain the hypothesis~that allowing the delivery of signals with high 
precision in space and time constitutes one of the design principles of cortex. Although this 
is suggestive of the existence of cortical events as defined above, it does not strictly imply 
that such events should exist, for it takes many summed EPSPs to trigger the activity of a 
cortical cell. 

The experimental approach used by physiologists to find cortical events, whether 
elementary or complex, consists of dividing the time axis into 1-ms steps and looking 
for reproducible events in this discretization. Elementary events, involving pairs or triplets 
of neurons, manifest themselves as small peaks in appropriately defined cross-correlation 
histograms. Complex events may be conveniently defined as sequences of synchronous 
activations-in the 1-ms discretization-of pools of neurons.  any such sequence, recorded 
at any time from any collection of neurons, is a legitimate candidate for a complex event; 
the sequence should, how ever,^ be reproducible in order to qualify as a cortical event. 
Reproducibility should be assessed by taking into consideration the statistical properties 
of the individual spike trains being recorded (see e.g. Abeles and Gerstein 1988). There 
is evidence, e.g. in the frontal cortex of awake monkeys, for the existence of complex 
cortical events (Abeles et a( 1993a), as well as for their possible role in behaviour (Abeles 

. 
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et a1 1993b,c). By conventional physiological standards, these data are scarce. However. 
it would be a misconception to infer from this scarcity that complex cortical events are 
unlikely to exist in any significant numbers. Simple statistical considerations (Abeles 1991) 
show that such events should be difficult to reveal experimentally, more so than elementary 
events, let alone than the elevated firing rates studied by single-cell methods. 

Synfire chains provide, until otherwise demonstrated, the most parsimonious explanation 
for complex events in cortex. Note, however, that synfire chains may actually exist in cortex 
simply because the cortical connectivity graph is rich enough to include them as randomly 
occurring subgraphs. One may then ask whether it is possible to account for the complex 
events observed in cortex without our rather strong assumption that cortical connectivity 
is a superposition of synfire chains. We consider in Appendix D, as a simple alternative 
to the synfire-superposition proposal, the hypothesis that cortex is a completely random 
graph, rich enough to include many synfire chains of given width and given multiplicity 
(Abeles 1991, section 6.2). We argue that under this random-connectivity model robust 
regulation of the global activity level is essentially ruled out: the activity should be largely 
chaotic (see also Sompolinsky et a1 1988). We also argue that even under the unlikely 
assumption that there existed a mechanism that could stabilize the global activity level at 
all times, there would be little reproducibility in individual neural activities over any period 
of time significantly longer than a synaptic delay. Thus, even though cortex, under the 
assumption that it were randomly connected, might include, as subgraphs, large numbers of 
synfire chains of multiplicity equal to or larger than the firing threshold of cortical neurons, 
complex cortical events, as defined above, would not be observed; the only cortical events 
one would expect to see would be of the elementary type, i.e. short-lived. 

9.2. The synfire-superposition hypofhesis 

These considerationein addition to the ones pertaining to the compositionality of cognitive 
functions-lead us to seek a model of cortex in which connectivity departs from randomness 
in such a way as to (i) favour the reproducibility of transmission along specific multisynaptic 
pathways over durations well above a synaptic delay, and (ii) favour the regulation of global 
activity levels. 

We proposed in this paper to envision the cortical network as a superposition of synfire 
Iinh L” = ( A p ,  B’), p = 1. . . . , p .  Under these conditions, if a given storage capacity is 
respected, i.e. if the load p is less than a given critical value pc,  nnd if the set of neurons 
active at time f = 1 has large enough overlap with a set UM of the form UM = UWEM B’, the 
distribution of membrane potentials at time t = 2 is bimodal; the lower peak is contributed 
by cells i AM = UpEM A’, while the higher peak is contributed by cells i E AM (section 
6.2). 

If we further assume that the stored synfire links are chained with each other, thereby 
forming a collection of synfire chains, reliable and reproducible synfire transmission follows 
at once (sections 6.3 and 6.4). We also argued (section 7) that the bimodality of the 
distribution of membrane potentials creates favourable conditions for a robust operation 
of the regulation mechanism postulated in section 2, thereby justifying the use of the 
conservative r-WTA dynamics. 

We further demonstrated in section 6.3.2 that synfire activity when the system is near 
criticality is characterized by the self-regulation of the population of waves: the network 
maintains the size of this population near a number h’. This number itself undergoes a 
sharp transition at the critical load pc. 

The proposal that the microstructure of the cortical network is a superposition of synfire 
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links is not unreasonable. However, the assumption that these links are chained together 
into long, regular, strictly feedforward chains of uniform width should be taken with a 
grain of salt. We shall argue shortly (section 9.3) that synfire chains are most likely to 
develop in cortex as a result of a process of natural selection, where random spontaneous 
activity plays a central role. If so, one should expect chains to be irregular, both in their 
width and in the strength of their connections; these parameters were taken to be uniform in 
section 5. However, it is readily seen that, provided there exist lower and upper bounds for 
these two quantities, the analysis performed in sections 6.2 and,6.3 is still essentially valid. 
More debatable is the assumption that stored circuits are precisely chains, i.e. feedforward 
one-dimensional networks. We shall touch upon this issue in the next two sections. 

9.3. Hebbian development and learning: instructive or selective 

We mentioned in section 5 that the synfire-superposition assumption could be viewed as 
deriving from a form of Hebbian learning sensitive to the accurate time structure of patterns 
to be stored. We will now discuss this proposal in more detail. 

Synaptic modification is likely to proceed by small increments. If this is the case. many 
episodes of synaptic changes will be required to stabilize a given synfire link L’ = ( A p .  B’). 
We derived in section 8 a figure of 80 sec for the average time separating two spontaneous, 
or background, activations of a given synfire link. Even if this figure is inaccurate by 
one or two orders of magnitude, it indicates that each link is activated spontaneously quite 
frequently. This is consistent with the general observation that unused synaptic contacts 
in the central nervous, system lose their efficacy rapidly, and eventually degenerate. An 
important implication is that learning in the proposed model cannot be envisaged as a 
purely instructive process, where the structure of a given stored chain is strictly determined 
by interactions with the environment. Rather, it should be construed as an epigenetic 
process, incorporating both environmental factors and self-organization mechanisms, the 
latter relying largely on spontaneous neural activity. 

Self-organization in this context means that the progressive selection of a given synfire 
pattern from the virtually infinite range of possible patterns stands in a relation of mutual 
positive feedback with the progressive reinforcement and stabilization of the synfire links 
that support this particular pattern. The more frequently a pattern is activated, the stronger 
the corresponding circuit will grow relative to competing circuits. and vice’versa. It has 
been demonstrated elsewhere on the basis of a numerical study (Doursat 1991, Bienenstock 
1991, Bienenstock and Doursat 1995) that such a process of self-organization will take 
place reliably &d under broad conditions as a result of accurate-time Hebbian plasticity 
complemented by a mechanism of competition  for^ the making of synaptic contacts among 
converging and diverging fibres. When these two mechanisms are enforced in a network 
whose initial connectivity is random, synfire chains develop in a process of growtht by 
accretion, not unlike the growth of crystals. 

This model of slow synfire-chain maturation by Hebbian plasticity is consistent with 
the view that the epigenesis of the brain follows principles of natural selection, as has 
been advocated by several authors (Changeux and Danchin 1976, Melman 1988). When 
brain epigenesis is considered from this evolution-theoretic perspective, a simple notion of 
‘fitness’ for cortical circuits emerges. Specifically, cortical pathways are selected for their 
ability to generate synchronous spikes in the fibres converging onto any given neuron (von 
der Malsburg 1981, 1987). This selectipn principle is a straightforward consequence of 

t In this ‘growth’ process. the number of neurons and the total synaptic strength from and onto each neuron may 
remain nearly ansfant. Synapses are reinforced at the expense of other. competing, synapses. 
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Hebbian plasticity acting with the dynamics of coincidence detection of neurons (section 3) 
and with a mechanism of competition or constraint in synaptic growth. Anatomically, the 
fitness criterion for cortical circuits may be expressed as a degree of cooperativiry between 
parallel multisynaptic pathways (see section 4); it can be measured by the faithfulness of 
the circuit to a spatio-temporal consistency rule ensuring such cooperativity (equation (A.l) 
in Appendix A-see also figures A1 and A2). 

Chains are by no means the only circuits to meet this fitness criterion. Virtually any 
graph with strong topological structure in low dimension? and with consistent conduction 
times along its connections is fitter, according to this criterion, than, say, a random graph 
(von der Malsburg 1987; see also von der Malsburg and Bienenstock 1986, Bienenstock and 
von der Malsburg 1987). Synfire chains, however, enjoy a particular status for at least two 
reasons: (a) being one-dimensional, they are the simplest possible type of such topological 
graphs; (b) they can be shown to de-velop spontaneously by a process of self-organization 
in an initially unstructured network. One-dimensional chains may therefore be thought of 
as ‘building blocks’ in the dynamics of neocortex. They may serve as ‘units of selection’ 
(Fdelman 1988) on the time scale of ontogeny, and as ‘units of computation’ on the time 
scale of mental processing. We will in section 9.6 illustrate this proposal with an outline of 
a synfire-superposition model for visual cortical processing. 

9.4. Synfire dynamics with strictly stable states 

Although, as mentioned in section 1, mental activity has often the character of a continually 
unfolding process rather than of a punctuated sequence of elicitations of stable states, it 
is nevertheless the case that in some situations a discrete item may be kept in working 
memory for a dozen of seconds or more. Much of recent electrophysiological research in 
the cortex of awake monkeys is carried out on animals trained to perform tasks involving 
such memory retention. The most striking finding in such experiments is the alteration- 
generally the elevation--offiring rates of cortical neurons (e.g. Miyashita and Chang 1988). 
These data are often taken to provide support to rate-coded associative-memory models (e.g. 
Amit and Tsodyks 1991). However, as noted in section 8, there is evidence (Abeles et a1 
1993a) that nearly all the spikes that contribute to such an elevation of firing rates during 
memory retention are part of various long complex cortical events, as defined in section 
9.1. 

It is therefore of interest to investigate the conditions under which a model based on 
synfire superposition would also display classical associative-memory properties defined in 
terms of elevated firing rates (Hopfield 1982). This would clearly require that stored chains, 
instead of being strictly feedforward, include feedback links. Thus, for instance, cyclic 
synfire chains, as described in section 6.4, can be used to create stable activity patterns, 
specifically periodic attractors. However, the existence of cortical circuits of such regularity 
is doubtful. More plausibly, one may envisage connectivity graphs intermediate between 
feedforward synfire chains and random graphs with feedback. Such graphs would contain 
multiple, irregularly arranged, feedback loops, leading to a reverberuting-synfire dynamics 
(see section 6.3). A network including a superposition of such graphs would qualify as 
a classical associative-memory model, with attractors defined in terms of firing rates, and 
would also retain important features of the synfire model, namely the existence of complex 
events and the separation of the distribution of membrane potentials into two modes. 

t This topology may or may not be consistent with Lhe 3D topology of the physical space in which the conical 
network is embedded. 
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9.5. Issues of timing 

We mentioned in section 3 that, from the perspective of a general modelling of cortex, neither 
a strictly synchronous nor a completely asynchronous scheme would be fully satisfactory. As 
an example of an asynchronous conservative dynamics, consider the pair-exchange scheme 
used in lattice gas models. In such models, a [O, 1)-valued variable xi([) specifies whether 
or not a molecule is present at site i ;  a random pair of sites ( i .  j )  is picked at time f + 1, 
and the values of variables xi([) and x j ( t )  are exchanged depending on whether a certain 
condition is met. A similar dynamics can be used for neural networks: a t  each time t + 1 
pick a random pair ( i ,  j )  such that xi([) = 1 and xj( t )  = 0 and swap their activities, i.e. 
set xi(z + 1) = 0 and x j ( t  + 1) = 1 with probability P = f (y(f + 1) - K( t  + I)), where 
f is a given increasing sigmoid-shaped function; as usual, the slope of the sigmoid may be 
viewed as an inverse temperature. 

It is easily seen that under this asynchronous dynamics synfire propagation does not 
take place. Thus, suppose that the activity at time t = 0 is concentrated in h pools of a 
given chain: if these pools are fully active, h < r fn .  Suppose, for instance. that pool B2 is 
fully active at t = 0, while B’,  B’ and B4 are inactive. Exchanges first take place between 
B2 and A* = B’, yet as soon as B3 has some activity in it, which occurs while B2 is still 
partly active, exchanges start taking place between B2 and A3 = B4 as well. Eventually an 
equilibrium distribution is reached, where the activity is spread uniformly over the entire 
chain. 

We will describe in Appendix B an almost-synchronous update scheme, where the 
neurons in pool p of the chain fire almost simultaneously, around a time T”, p = 1, . . ., a 
stochastic process which takes on a different set of values for each new wave that propagates 
on a given chain; we shall call T’ the intrinsic time of the wave. In the case of a single chain, 
using the shictly synchronous update instead of the almost synchronous. one boils down to 
the fairly innocuous assumption that T @  is deterministically equal to p, for p = 1.. . .. 
We shall argue in Appendix B that the synchronous model is still legitimate in the case of 
multiple chains, provided synaptic interactions between stored chains are totally random. 
The intrinsic times of waves propagating on distinct chains are then statistically independent, 
which amounts to saying that these waves are not synchronized. 

We suggest here that with the introduction of Hebbian plasticity in the network the 
assumption that synaptic interactions between chains are totally random ceases to be valid. 
Specifically, one should expect to see synaptic interactions of the form studied in Appendix 
C, which tend to consistently synchronize the activity between chains. This is in line with 
the self-organization mechanism discussed in section 9.3: when acting on chains that are 
already individually stabilized, this mechanism will bind these chains into broader, if less 
stable, chains, using whatever synaptic material is still available. Since the connectivity 
graph of cortex is diluted and because of additional timing constraints (the spatio-temporal 
consistency rule-see Appendix A), most couplings between chains will be weak, resulting 
in situations like the one studied in Appendix C. 

9.6. HierarchicaVrecursive cortical processing in the synjire-superposition model 

In this section we outline a tentative synfire-supelposition model for cortical processing, 
emphasizing the recursiyehierarchical aspect of compositionality (von der Malsburg 1981, 
Bienenstock and Geman~ 1993). We use visual perception to illustrate our proposal, which, 
however, applies to other cognitive functions as well. In general, compositional theories of 
perception-as contrasted, for instance, with models based on the use of prototypes-may 

. 
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be viewed as attempts to address in a principled way the fundamental issues of segmentation 
and invariance. Segmentation is achieved in the process of making explicit relationships at 
the lower levels of representation, while the interaction with stored higher-level compositions 
provides a mechanism for the ‘labelling’ of sensory input at various levels of abstraction. 

Physiologically, the activity of neurons in VI, the first stage of visual cortical processing, 
is by all accounts strongly driven by visual input. Anatomically, however, the cortical 
input to any neuron in VI-from V1 or from other cortical areas-by far outweighs direct 
visual input fed by geniculocortical afferents. We suggest that this abundant recurrent and 
descending connectivity subserves a synfire-type dynamics which may remain, with current 
investigating tools, largely hidden from the experimenter. Specifically, we suggest that each 
and every neuron in VI-as well as in the rest of neocortex-takes part in a large number 
of synfire chains. The task of these chains is to piece together the responses of single units 
into more complex patterns. In a first approximation, the response of an individual unit may 
be construed;in accord with the classical view, as an elevated firing rate, triggered by an 
elementary stimulus such as a small contour in appropriate retinal position and orientation. 
We propose that elevated firing in cortex is most of the time-perhaps always-part of 
synfire activity, along the lines indicated in section 8. Synfire activity associated with~the 
elevated firing of a cell in V1 may extend along multiple alternative routes, within VI 
as well as into other cortical areas; it uses recurrent, ascending, as well as descending 
pathways. 

As mentioned, there is considerable overlap between chains: each neuron in V1 may 
belong to hundreds of different chains?. Theie chains, having evolved and stabilized during 
earlier functioning of the system thanks to the epigenetic mechanism outlined in section 9.3, 
support synfire patterns that are the neural counterparts of mental representations (section 1) 
of various levels of ‘complexity and abstraction$. At the lowest level, synfire waves in VI 
may represent simple parts of visual stimuli such as straight or curved contour lines. These 
lines may themselves be parts of object boundaries, and may be assembled with each other 
to form a boundary description of a scene. Other local activity patterns may relate to surface 
patches and their attributes. The latter may be assembled into ZD topologically structured 
graphs (constructed from more elementary chain-like graphs-see section 9.3) representing 
extended surfaces with smoothly varying features. The two types of representations may 
be further combined. in a manner consistent with boundary-determined discontinuities, to 
form 3D representations of objects. 

In this model, there is a high degree of overlap and recursive embedding betwen 
representations of different levels. In much the same way as each neuron participates 
in many ‘narrow’ chains, each such chain is part of many broader chains and so on. This 
hierarchy provides for an essentially unbounded, recursive, combinatorics. Synfire chains 
of lower levels may be entirely contained within V1. Higher levels, however, require 
additional circuits, to inscribe in long-term memory specific combinatorial arrangements 
between lower-level synfire waves. This additional neural machinery may be located in 
cortical areas traditionally regarded as integration zones, but aptly renamed convergence 
zones by Damasio (1989): 

‘The two critical structures in the proposed architecture are the fragment record 
of feature-based sensory or motor activity, and the convergence zone, an amodal 
record of the combinatorial arrangements that bound the fragment records as they 

t The figure of400 derived in section 8 can be taken as a coarse estimate for this number; just like other numerid 
estimates in this paper, it could be wrong by one or several orden of magnitude. 
$ The width of a synfire pattern may be a measure of its complexity. 



A model of neocorfex 213 

occurred in experience ... There is no Iocalizable singIe store for the meaning of 
a given entity within a cortical region. Rather, meaning is reached by widespread 
multiregional activation of fragmentay records pertinent to a stimulus, wherever 
such records may be stored within a large array of sensory and motor structures, 
according to a combinatorial arrangement specific to the entity.’ 

9.7. Further speculations 

As seen in section 9.3, the dynamics of synfire waves on the relatively fast time scale 
of mental processing cannot be easily dissociated from the intertwined Hebbian dynamics 
of chains on the slower time scale of epigenesis and learning. To simplify, one may 
nevertheless envisage that in a first strictly self-organizational stage stable narrow chains 
start to grow independently of each other in large numbers, while in a second epigenetic 
stage complex patterns of couplings of various strengths develop between these essentially 
stabilized chains. These patterns of couplings will be determined by the history of 
functioning of the system, and will thus reflect events that took place in relation with 
interactions with the environment. Due to the sheer number of chains, to the dilution of the 
cortical connectivity graph, to the quenched randomness in this graph and in the conduction 
times, and to the near-simultaneous development of many couplings between chains, these 
couplings will be partly frustrutedt, i.e. will contain constellations that stand in mutual 
conflict. Under these conditions, one should expect a high diversity of metastable patterns 
of binding. Such bindings will be highly sensitive to perturbations, or input, resulting in a 
behaviour that could be described as dynamical binding. 

Dynamical binding of synfire patterns may also rely, at least partly, on fast and reversible 
modification of synaptic transmission, as postulated by von der Malsburg (1981). 

Note that binding mechanisms proposed in the last few years generally rely on the phase- 
locking of periodic or almost periodic neural oscillators (e.g. Gray et a1 1989, Eckhorn er af 
1988, Shastri and Ajjanagadde 1993). The solution proposed here provides an  alternative 
to the oscillation model, yet is not incompatible with it. Strictly periodic oscillations in the 
synfire model would take place on cyclic chains (section 6.4). We mentioned, however, 
that these highly regular graphs are unlikely to develop in cortex. More plausible are 
partly organized chains with some degree of feedback (section 9.4). The findings about 
pseudo-periodic spiking activity in cortex, triggered in particular by appropriate visual 
stimulation (Gray et al 1989, Eckhorn et al 1988), might be reinterpreted as a manifestation 
of reverberating synfire activity in such circuits. It would also be of interest to apply to early 
visual cortical areas the techniques used by Abeles and Gerstein (1988) to reveal possible 
synfire patterns (see section~9.6). 

Note that the synfire solution to the binding problem provides, in the form of accurately 
defined spatio-temporal patterns, a neural substrate richer than that afforded by mere 
temporal patterns (periodic oscillators). An immediate consequence, investigated in this 
paper, is that the firing of a given neuron can be part of many distinct synfire patterns, 
each of which is a stable reproducible entity with specific interactions with other such 
entities. A flexible medium of this sort is probably necessary for our brains to carry 
out the compositional operations that are manifested in perception, language, reasoning, 
metaphorical thinking, etc. 

To further elaborate, note that by introducing additional synfire links within a circuit 
that was initially a one-dimensional chain, a complex structure can be created. This process 

t The notion of frustration (Toulouse 1977) is used in statistical physics to describe a system including local 
interactions that Cannot be satisfied simultaneously. 
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may be likened to that of protein folding: starting from a strongly linked one-dimensional 
chain of amino acids, a complex three-dimensional protein-with highly specific affinities 
for other proteins-is created by introducing additional weak links in the chain, resulting 
in its folding in space. Similarly, an initially onedimensional synfire chain may be thought 
of as ‘folded‘ on itself as a result of the introduction of weaker links between neurons or 
pools that are distant from each other in the chain (see Sereno 1991 for related metaphors). 
The binding with each other of two or more synfire chains that have been folded in this 
way may be viewed as the establishment of a structure-preserving correspondence between 
complex entities, a type of operation that is characteristic of most-perhaps all-high-level 
cognitive functions. 
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Appendix A. Synfire braids 

Here we re-examine the definition of a synfire chain from the point of view of the 
functional anatomy of cortex, bearing in mind the five properties of mental representations 
listed in section 1. We extend the notion of a synfire chain, whose connections all have 
identical conduction times, into that of a synfire braid, whose connections have non-uniform 
conduction times. We argue-without providing detailed proofs-that the analysis carried 
out in the paper for a superposition of synfire chains extends to a superposition of synfire 
braids. 

Note first that neural activity related to the performance of a cognitive function often 
manifests itself simultaneously in several anatomically defined cortical areas. Inasmuch 
as specific functional roles can be assigned to these different areas-different sensory 
modalities, for instance, are localized in distinct regions of cortex-the question arises 
of how such distributed neural activity, corresponding to different fragments, aspects, or 
features of a given ‘entity,’ is assembled into a coherent whole. A given entity that is 
distributed in this anatomical sense may have a stable and reproducible semantic content 
in the sense of section 1, as evidenced in its manifestations in conscious mental processes. 
In the present model we are therefore dealing with populations of neurons extending over 
several distinct cortical areas (see also Damasio 1989, Bienenstock 1991). 

We also mentioned in sections 2 and 7 that the regulation of global activity levels, which 
is implicit in the r-WTA dynamics, is likely to be efficient and robust provided inhibitory 
feedback acts somewhat faster than excitatory feedback. We argued that this was likely 
to be the case, since about half of the excitatory feedback is mediated by long-distance 
axons, while inhibitory connections are strictly local. There is moreover evidence that 
long-distance cortico-cortical excitatory connections travelling through the white matter are 
necessary to maintain a non-zero level of activity in cortex (Burns and Webb 1979; see 
discussion in Abeles 1991, section 5.4.3). Again, this reasoning is valid only if the network 
under consideration is distributed over several distinct cortical areas. 

Yet synfire transmission as described in section 5 requires that axonal conduction times 
be identical for all the connections from a given pool to the next. This condition is met 
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if the N neurons are all contained in a small volume of cortical tissue: connections are 
then local, and conduction times are significantly shorter than synaptic delays, which are 
all of the order of 1 ms. The condition, however, is violated if both local and long-distance 
connections are included, since conduction times plus synaptic delays are then scattered 
across a broad range of values, say from 1 to 10 ms. 

On the basis of these considerations, Abeles (1991, section 7.4.5) suggests that ‘it is 
possible that synchronous transmission is carried only locally. whereas transmission across 
large distances is carried by asynchronous volleys.’ Thus, synfire chains as proposed in 
Abeles (1982, 1991) are meant to be local cortical circuits. 

Here, however (see also Doursat 1991, Bienenstock 1991). we propose to extend the 
notion of a synfire chain so as to accommodaie a range of different conduction times along 
different connections. As mentioned in section 4. the mechanism of synfire transmission 
along a given chain relies on the temporal overlap of a large-enough number of EPSPS 
on the somato-dendritic membrane of every neuron in the chain. Such overlap occurs if 
the converging impulses giving rise to the EPsP~ on a given n e w n  are well-synchronized. 
Synfire chains as described in Abeles (1982, 1991), consisting of discrete sequences of pools 
of neurons with feedforward connections of identical conduction times between successive 
pools, are the simplest of all neural circuits that guarantee such synchrony of converging 
spikes on each neuron. We shall now define a broader class of networks, with the same 
property of synchrony of converging spikes, but where conduction times are distributed over 
a range of values. 

Consider a strictly feedforward network, i.e. a network without loops, with different 
conduction times on different connections. We assume that the conduction times are real- 
valued, distributed over an interval [I, Ah,], where AtM is. say, 10 ms. The network is 
called a synfire braid (Doursat 1991, Bienenstock 1991) if it satisfies the following spatio- 
temporal consistency rule: given any two neurons i and j in the network and given several 
alternative paths from j to i ,  the total conduction time from j to i is nearly the same along 
each of these paths. The paths under consideration are generally multisynaptic, and the 
condition should hold only for a limited synaptic depth, say of the order of 5. A simple 
example, of synaptic depth 2, is as follows. If j is presynaptic to k and 1 and if the latter 
are both presynaptic to i ,  thendenot ing  by At,, the conduction time of the connection 
from neuron y to neuron x-the following relationship should hold 

(-4.1) 

Equation (A.l) may actually be taken as the definition of a synfire braid. 
Consider first the idealized case of a braid in which equation (A.l)~is satisfied exactly 

rather than approximately; the consistency rule then holds for paths of arbitrary synaptic 
depth. In this case, the Atij may as well be taken to be multiples of a basic time unit, say 
1 ms. Conduction times thus take their values in the set of integers [ 1, . . . , A r ~ l ,  and the 
braid is actually, like a chain, a discrete sequence of pools of neurons. To each neuron i in 
the braid there corresponds a discrete time ti, measured with respect to an arbitrary origin, 
and the consistency rule can be written simply in terms of these ti as follows: 

Atjk + At, sz Atji + Atrj. 

ti = Atij + tj. (A.2) 

We shall refer to a synfire braid of this type as a discrete-rime braid; a fragment of such a 
braid is shown schematically in figure AI. 

Note that equation (A.2) (hence equation (A.l)) is trivially satisfied in the case of a 
synfire chain, with Atjj = 1 for any pair i and j such that there is a connection from j to 
i. Thus, a synfire chain is a particular instance of a discrete-time braid. We shall say that a 
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FiguE AI. A fragment of a discrete-time synfire braid. Conduction times are indicated next 
to each synapse. As in a synfire chain. neurons are m g e d  in a discrete sequence of pools, 
with identical delay (1 ms) between m y  two adjacent pools. Unlike in a synfire chain. there 
are connections between non-adjacent pools; the corresponding conduction times (axonal plus 
synaptic delay) are multiples of 1 ms. The spario-temporal consistency rule (equation (A. ] ) )  
states that the summed conduction times along alternative pathways between two given neurons 
should be identical. For instmce, the five different pathways from neumn i to neuron j all have 
a told conduction lime of 3 ms, and hence coopernre in triggering the activity of j .  As a result, 
the braid behaves like a synfire chain, 

braid has (converging) multiplicity m if every neuron in it ,receives at least m connections. 
It is readily seen that if we adapt either of the two synfire-chain models mentioned in section 
4 (Abeles 1991, Abeles et a1 1993b) to accommodate inhomogeneous discrete conduction 
times, we obtain essentially the same behaviour for a discrete-time braid as for a synfire 
chain with same multiplicity. A triggering pattern in such a braid is distributed over AtM 
adjacent pools; it consists of the. activation of, a number of neurons at least equal to a given 
ignition threshold, with the proper timing relationships between these activations. 

The r-WTA dynamics in a network with discrete conduction times is defined as before 
(section 5) ,  the input to neuron i being now 

N 

Equation (A.3) is a straightforward generalization of equation (1) to the case of 
inhomogeneous integer-valued conduction times. 

The case of a network made of a superposition of discrete-time braids can be studied 
under the ~ - W T A  dynamics along the same lines as the analysis performed in section 6 for a 
superposition of chains. A random discrete-time braid of width n, length p and multiplicity 
m in a network of N neurons c a r  be defined by the following two-step procedure: (i) draw 
independently p random sets B', . . . , BP of size n each, and assign time ti = p to every 
neuron i E B', p = 1, .  . . , p ;  (ii) to every neuron in B", connect m randomly drawn 
neurons in B', and define the conduction times for these connections according 
to equation (A.2). The usual cyclic boundary condition (section 6.3) can be obtained, if 
desired, by taking p and v modulo p .  

Just like for a chain (section 5) ,  the storage of a synfire braid results from the Hebbian 
modification of the synapses between the neurons that take part in the synfire pattern being 
stored. The plasticity rule is sensitive to the accurate time structure of the synfire pattern: 
only those connections whose conduction times happen to match this structure are reinforced. 
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With these straightforward adaptations, the behaviour for superimposed braids is the 
same as for superimposed chains. Specifically, storagdretrieval is efficient provided the 
network is not overloaded. Note that the deterministic component of Vj(z + 1) is now 
m instead of n; the crosstalk component is easily seen to be 91 = rpnm/NZ instead of 
V I  = rpn2 /N2 .  As a result, storage capacity-when compared to the expression obtained 
for a chain-becomes multiplied by a factor m/n .  

Consider now the more realistic case of a braid in which equation (A.l) is only 
approximately satisfied. The condition for synfire transmission to take place is that the 
scatter of the arrival times of converging spikes on any neuron in the braid be smaller than 
the duration of EPSPs; the latter will be denoted by 7. The braid can no more be partitioned 
into a discrete sequence of pools of neurons; the time zi assigned to neuron i is now a real 
number, and the consistency condition is 

l f i - f j - A f i j l < T  (A.4) 
for each pair of neurons (i ,  j) with a connection from j to i. This is illustrated in figure 
A2. 

Fignre AZ. A fragment of a continuowtime synfire braid. The braid is a loop-free directed 
graph with real-valued conduction times (not indicated in the figure). Unlike in chains or 
discrete-time braids, neurons do not form a discrete sequence of pools. However. the spatio- 
temporal consistency rule (equation (A.l)) still applies. requiring, for instance, that the’9 different 
pathways from neuron i to neuron j all have nearly identical total conduction times. Again, 
this consistency/cooperativity property yields a behaviour similar to that of a synfire chain. 

The discrete-time T-WTA dynamics can still be used in a network with real-valued 
conduction times, provided we define the input to neuron i appropriately. ,One possible 
definition is 

In this equation, the allowed scatter in the arrival times of converging spikes is one time unit. 
i.e. 1 ms, which is smaller than t, the~duration of an EPSP. One could allow a broader scatter 
of anival times, yet this would make it necessary to include a refractoriness mechanism. 

A random continuous-time braid may be defined as follows: (i) choose at random a 
collection of q1 neurons from the N neurons in the network and assign to each neuron i in 
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this collection a random time ti distributed uniformly over a given interval [O. TI: (ii) choose 
at random, from this set of 41 neurons, 42 ordered pairs (i. j )  such that 0 4 ri - t j  4 A ~ M  
and connect j to i with a random conduction time satisfying equation (A.4). This results in 
a synfire braid of multiplicity m 0 42/41. Note that T is the equivalent, for a continuous- 
time braid, of the length p of a chain or discretetime braid; q1/T is the average number 
of active neurons per unit of time, we may denote n = ~ q j / T ,  and call n the width of the 
braid. 

With these definitions, the analysis of the dynamics of a network made of a superposition 
OF continuous-time braids is essentially the same as for discrete-time braids, with same 
storage capacity. 

In sum, both the notion of a synfire chain and the r-WTA dynamics can be extended 
to accommodate inhomogeneous conduction times: the results derived in section 6 are still 
valid under this extension. As a result, the network under study can be distributed over 
several interconnected cortical areas. 

Appendix E. Almost-synchronous dynamics 

We first provide a brief summary of the discussion of the stability of synfire transmission 
presented in Abeles (1991, section 7.4). We then describe, based on this discussion, a 
refinement of the synchronous discrete-time dynamics, in a spirit of a linear-stability analysis 
of perturbations of the firing times of individual neurons. 

Consider a synfire chain Bo, B’ ,  . . . , of width n and multiplicity m. During transmission 
along a link L” = (B’+’, Be )  in the chain, a given cell i in B”+’ discharges when its 
membrane potential reaches thefiring threshold, under the effect of a volley of m temporally 
overlapping EPSPs, received from neurons in B’ active about 1 ms earlier. This summed EPSP 
is superimposed onfluctuations of the membrane potential of i, due mainly to synaptic inputs 
from neurons that are not part of the chain undei consideration. These fluctuations induce 
variability in the time of firing of i. However, provided the multiplicity m is somewhat 
higher than the number of EPSPs it takes to bring the membrane potential to threshold, such 
fluctuations will not accumulate to such an extent as to disrupt synfire transmission; this 
is true irrespective of the length of the chain. Indeed, if the condition just mentioned is 
satisfied, the timing of the firing ‘of cell i in B’+’ is determined, roughly, by the mode of 
the arrival times of the m EPSPs. The mode is nearly identical for all neurons in B”+’, and 
its variance is considerably smaller than the variance of the individual arrival times. 

Another source of temporal jitter in synfire transmission is the stochasticity of transmitter 
release at each synaptic junction. This, however, generally contributes significantly less than 
the fluctuations of the postsynaptic membrane potentials. 

In accord with this short discussion, the firing time of a neuron in B”’ can be viewed 
as the sum of two random variables: the first, common to all neurons in B”+’, is the mean 
of the firing times of neurons in B’ plus the common delay, taken to be 1 ms; the second 
is an independent random variable, resulting fiom the fluctuations of individual membrane 
potentials in B@+’. 

Denote by tp ,  . . . , ff the firing times of the n neurons in B” and assume that synfire 
transmission took place up to pool p, i.e. that the scatter of these times is small with respect 
to 1 ms. The firing times of neurons in B”’ are then given by 

, 
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for i  = 1 , .  . . , P I ,  where the Q(p+ 1) are independent identically distributed (i.i.d.) random 
variables, of mean 0 and standard deviation U, with U << 1. 

Equivalently, if we define T” = 1 + ( l / n )  E;=, $‘-I, the n neurons in BG fire at 
times ti” = T’ + S2i(p), where the Q(p) are i.i.d. random variables as specified above. 
It is readily seen that: the stochastic process T’ is Markov; for a given p the standard 
deviation of T” is u m ;  if we assume that all neurons in Bo fired at time 0, i.e. 1; = 0, 
i = 1,. . . , n, then the expected value of T” is p. 

This model accounts for the two main characteristics of synfire transmission (section 
4): (i) stability of transmission, or ‘resynchronization’ (Abeles 1991). which means that the 
scatter in the firing of the n neurons in any pool p is constant and does not increase with p 
(the standard deviation is equal to U in this model); (ii) jitter in T”, the global firing time 
of pool p (the variance of T U  grows linearly with p). 

Synfire transmission along a given chain is thus almost-synchronous. In the present 
paper, we used a strictly synchronous dynamics, where the states of the neurons in pool p 
are updated precisely at time p, where p is an integer. This is legitimate if it is understood 
that y is an approximation of a real-valued stochastic process T’ of mean p. Different 
waves, along different chains or along the same chain, will produce different reulizutions 
of the stochastic process [ T p ] F l , . . . ,  which we shall call the intrinsic time of the wave. 

We argue now that this approximation is legitimate not only in the case of a single chain, 
as modelled by equation (B.l), but also in the more general case of a network including a 
number of randomly overlapping chains, as studied in sections 5 and 6. In such a network, 
the interactions between the different chains are random; such interactions are accounted 
for by the noise term Qi(p + ~ l )  in equation (B.1). This random variable, of meun zero, 
represents fluctuations in the firing time of neuron i resulting from crosstalk EPSPS, which are 
statistically independent from the volley of EPSPs originating from cells in B”. As long as 
storage capacity is respected, i.e. p <: pc. the number of such crosstalk EPSPs impinging on 
neuron i shortly before time Tu+’ is small with respect to n (m if the chain is incomplete). 
In other words, the size of the fluctuation of the membrane potential of i is small with 
respect to the summed EPSP caused by the volley of synchronous spikes emitted from pool 
B” at time T”; therefore, the assumption U << 1 is legitimate. 

In short, the strictly synchronous update scheme used in the paper provides a first- 
order approximation to the more realistic almost-synchronous dynamics described here, 
provided the relationships between stored chains are random, as is the case in the situations 
studied in section 6,  and provided the storage capacity of the network is respected. Synfire 
waves propagating simultaneously along distinct chains are then, to a first approximation, 
independent of each other; in particular, the intrinsic times T” relative to distinct waves 
propagating on distinct chains are independent. These waves are not synchronized. 

Appendix C. Dynamical binding 

We study here, under the almost-synchronous model described in Appendix B, a situation 
where the synaptic interactions between two different chains are no1 random, and hence 
induce a perturbation in the firing time that can no more be accounted for by the sole zero- 
mean noise term Qi(p). Specifically, we consider two chains Bo, B’, . . . and CO, C1.. .. , 
both of width n,  such that, for all p, synaptic contacts exist from B” to C”” and from 
C” to E!’+’. This regular pattern of synaptic interaction tends to induce synchrony between 
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waves propagating simultaneously on the two chainst. The biological underpinnings of this 
situation are discussed in section 9.5. 

We are interested in situations where the number of synaptic inputs received by any 
neuron in one chain from neurons in the other chain is small with respect to the chain 
width, n. For simplicity, we take this number to be equal to 1 for every neuron. To further 
simplify the calculations, we assume that neuron i in pool B” makes a synaptic contact 
with neuron i in pool C”+’ and that neuron i in pool C” makes a synaptic contact with 
neuron i in pool B””. We wish to demonstrate, using a simple asymptotic argument in the 
length of the chains, that such weak synaptic coupling is enough to ensure the stability of 
the synchrony of synfire waves propagating along the two chains. 

As in Appendix B, denote by [tfti=l.....n the firing times of neurons in E”, and let 
[si ti=l, . , , ,n be the firing times of neurons in C”. Under the assumptions made above, and 
if we further assume that the first pools of the two chains are activated simultaneously, the 
firing times obey the following equations: 

” 

1 
n + l  

s/+’=1+-  

for i = I ,  . . . , n, where the Qi(p + 1) and Qi(p + 1)  are i.i.d. random variables of mean 
0 and standard deviation U << 1. 

As in Appendix B, define T’+’ = 1 + ( l /n)  Cy=1 t/ and similarly let SF+’ = 
1 + ( l / n )  s:; T’ and S” are the intrinsic times of waves along the B chain and 
the C chain. Summing equations (C.1) and (C.2) over i and dividing by n shows that T” 
and S’ form a joint Markov process; for a given p, the expected values of T” and S” are 
p if all neurons in Bo and CO fired at time 0. Due to the coupling between equations (C.1) 
and (C.2). these intrinsic times are not independent. Subtracting the summed equations 
from each other, one obtains: 

where the random variable S”(p + 1) is’ Gaussian (or nearly so) of mean zero and 
standard deviation C T ~ .  The Markov process T” - S” is a classic Ornstein-Uhlenbeck 
process. This process achieves an asymptotic equilibrium distribution, which depends on 
U :  the smaller U ,  the closer IT” - S’I remains to the origin. This demonstrates that 
synchronization is srable. 

In conclusion, ‘weak coupling is enough to ensure the stability of synchronous 
propagation on two chains. This provides a binding mechanism: provided the two chains 
are coactivated with appropriate initial timing, the intrinsic times of the waves will be nearly 
equal. A similar situation is studied numerically in Abeles et al (1993b). In section 9.7 
we argue informally that in a network containing a large number of chains that are weakly 
bound with each other in partly conflicting (‘frustrated‘) patterns, binding will manifest 
itself as a dynamical property. 

t One could have studied an equivalent situalion where it is a non-random overhp between chains that induces 
synchrony. For instance, pools B’ and C’ may, for each &, share a small number of neurons. 
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Appendix D. The random-graph model of cortical connectivity 

Here we envisage the random-graph model for cortical connectivity (see section 9.1) as 
a simple alternative to the synfiresuperposition model: we ask whether the random-graph 
model can plausibly account for the existence of complex cortical events. Specifically, 
assuming that the connectivity graph of cortex, while random, is rich enough to include 
as subgraphs numerous synfire chains of given width and given multiplicity, we ask the 
following questions: (a) How should a chain be defmed, i.e. what criterion-functional or 
anatomical-should be used to assign a given neuron to a particular chain? (b) To what 
extent does the analysis of an isolated chain apply to a chain embedded in a larger random 
network? (c) In particular, does the latter cany stable synfire activity? 

In the random-graph model (Abeles 1991, section 6.2), N neurons are assumed to form 
excitatory contacts with each other at random, with a given fixed probability n-the dilution 
coefficient-for each ordered pair of neurons. The likelihood of existence of a subgraph that 
constitutes a chain of width n and multiplicity m within this random graph of N neurons 
is assessed for various values of n. Given a set E of size n and given a neuron i, let 
m a ( i )  be the B-multiplicity of i, i.e. the number of neurons in B that make contacts on 
i .  One then computes, for a pool B’ of n cells and for a number m,  the expected number 
x = x ( N ,  n ,  n, m )  of cells i in the network such that mss(i) > m. If x >> n ,  the network 
almost certainly contains at least one set B2 of size n such that the link L = ( B 2 ,  B ’ )  is of 
multiplicity at least m.  A chain of width n and multiplicity m can be defined recursively in 
this manner. This is one possible answer to question (a) above. 

As a numerical example. consider the following values for the random graph: N = 
2 x IO4, H = 0.25 (see section 8). Set n = 50 and m ’= 15. The expected number of cells 
i with mal(i)  2 15 for a given set E’ of size 50 is x ( N ,  z, n ,m)  = 5038 (Abeles 1991, 
table 6.2.1). Therefore, there almost certainly exists a set BZ of size n = 50 such that the 
multiplicity of the link L = ( B 2 ,  B’ )  is at least 15. Using this argument repeatedly one 
can find in the random network a chain (B”)p=~,...,p of width 50 and multiplicity 15, and 
of virtually any lengtht. 

We shall now argue that, although many such chains are likely to exist in cortex under the 
random-connectivity model, these chains will not carry stable reproducible synfire activity$. 

With the above numbers and if we assume that the firing threshold-the number of 
synchronous converging spikes required to activate a neuron-is 15, activating a set of 
n = 50 neurons at time t = 1 will result in about 5000 neurons being active at time 
t = 2. If the width of the transmitted pattern is to be kept about equal to 50, a regulation 
mechanism-as discussed in section 2-is required. Note that with the above numbers 
there almost certainly exist in the network chains of same multiplicity m = 15 but of width 
n = 40, n = 60, etc. Any particular value, such as 50, should then be viewed as imposed 
by the regulation mechanism. Thus, upon activation of a set B of size n = 50 at time 
t = 1, fifty neurons have to be chosen at time t = 2 from about 5000 neurons that are 
all equivalent if the firing threshold is 15. The only plausible way to make this choice a 
reproducible one is to activate the 50 cells with largest m B .  Regulation can then be viewed 
as adjusting the firing threshold to a value 8 such that the number of cells i with m&) 2 0 
is about 50. This can only be done in the mean: the best choice for 8 is the value given 

t Here, the choice of m and n is arbitmy. A biologically motivated choice would be m = 22 and n = 100 (see 
section 8). We chose somewhat smaller values form and n in order to be able to use table 6.2.1 of Abeles (1991). 
The conclusions of the discussion to follow are. however, valid for larger values of m and n. even more so than 
for small values. 

This problem is touched upon in Abeles (1991. section 6.3.2). 
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Figure D1. Lack of reproducibility of synfire transmission in the random-graph model. In a 
random graph, one could envisage the propagation of a synfire wave as follows. Upon activation 
of B set B of size n at time I. then neurons that receive m i m l  input from B become active 
at time 1 + I ;  this n - w ~  rule requires some tie breaking. In the simulation shown, the size of 
the graph is N = 5000 and the probability that a node i is connected to a node j is x = 0.25. 
Two 'synfire waves' of amplitude n = 50 ace propagated, starting from the same initial set B" 
but using different seeds for tie breaking. The Hamming distance between the resulting two sets 
is shown as a function of time (averaged over five such experiments). It is seen that the two 
sets rapidly become disjoint (Hamming distance equal to 2n). This demonstrates that the tie 
breaking inherent in the definition of a synfire chain in the random-graph model suffices to Nle 
out long-mge order: there is no reproducible synfire propagation in the random-graph model. 

by x ( N ,  i ~ ,  50,0) % 50; for instance, with the above values for N and ir, the adjusted 
threshold is 0 % 22. This is precisely the r-WTA dynamics described in the present paper, 
with r = n. 

Stated differently, the definition of a synfire chain of width n in arandom graph (question 
(a) above) is now as follows. For any set B' of size n ,  let @(B')  be the set of n neurons 
with maximal B'-multiplicity inB,. The synfire chain that has B' as first pool is obtained 
by iterating the map @: B2 = @(B'), B3 = @(B2), etc. Note that the chain is not uniquely 
defined, because @ generally is not; ties in the definition of @ can only be broken at random. 
We now face the following question (question (c) above): is synfire propagation on such a 
chain stable and reproducible? 

Assume that a given set of neurons B of size n is active at time t = I ,  and let a neuron 
i be active at time t = 2 if and only if mB(i)  0, with B such that x ( N ,  z ,n ,  0) = n. Due 
to the randomness of the graph, the number mB(i) is a random variable; its distribution is 
unimodal, specifically a binomial, well-approximated, in the limit of large n, by, a Gaussian 
of mean nx and variance niI(l-n).  The value of B such that x ( N , n ,  n, 8) = n falls in the 
upper tail of this Gaussian, since n / N  is a very small number. Denote by n' the number of 
neurons i such that ms(i) > 0, i.e. the number of neurons active at time r = 2; this number 
is itself a Gaussian variable, of mean n and standard deviation fi. 

Thus, even if 0 were perfectly adjusted, the regulation of activity would be quite noisy. 
Moreover, it is unreasonable to assume that 0 can be adjusted very accurately. Yet n' 
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happens to be extremely sensitive to the setting of 0. For instance, with parameter values 
as above, Table 6.2.1 in Abeles (1991) shows that decreasing m by as little as. 1 results in 
an increase of x ( N ,  R ,  n ,  m) by a multiplicative factor of at least 3. This is true for any n 
between 10 and 50. For instance, for n = 50. this 300% variation of the expected number 
of neurons active at time t = 2 is caused by a mere 5% variation (110 with 0 = 22) of 
the firing threshold. Under these conditions, the regulation would also be overwhelmed by 
membrane-potential juctuations of postsynaptic neurons (compare with the robustness of 
the synfire-superposition model-see section 7). 

Finally, let us assume, for the sake of argument, that a perfectly robust regulation 
mechanism existed, causing the activity to follow exactly the chain B', B2 = @ ( B ' ) ,  
B3 = @ ( B 2 ) ,  . . . constructed above. It is easily demonstrated numerically that, even in that 
case, synfire transmission would be highly unstable. Indeed, the k-th iterate of the map 
$ on a random graph. with parameters in the same range as above and k >> 1, is highly 
sensitive to small perturbations. Figure D1 shows the results of a computation performed 
with N = 5000, n = 50, and R = 0.25. The map $b was iterated mice, starting from the 
same set Bo of size n, but using two different seeds for tie breaking (see above). This yielded 
two realizations of the iterates Bk, and the curve shows the Hamming distance between the 
two realizations as a function of k (averaged over five trials). It is observed that within five 
or six iterations the two sets are virtually disjoint. Note that it is not even necessary to add 
noise (corresponding to membrane-potential fluctuations) to reveal the instability of synfire 
transmision in the random-graph model; the mere tie-breaking inherent in the definition of 
the chain suffices to overwhelm any reproducibility of transmission. 

In conclusion, under the random-graph model for cortical connectivity, one should 
expect total activity in cortex to be a largely chaotic process, and one should not expect 
to observe reproducible complex events as defined in section 9.1. Otherwise stated, the 
correlation range should be short: for to >> 1 and for any i and j ,  E[xj( t )x , ( t  + to)]  = 
E[xi ( t ) ]E[x , ( t  + to)] = r Z / N 2 .  In contrast, synfire transmission as studied in section 6.3 is 
characterized by long-range order: if we assume cyclic boundary conditions for the stored 
chain, then, for any i E B' and j E BY and for any delay 20, E[xi( t )x , ( t  + to)] = r / N  if 
to v - (mod p ) , ~  ?IN2 otherwise. 
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